File: lapack.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (634 lines) | stat: -rw-r--r-- 11,071 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
"""
Low-level LAPACK functions (:mod:`scipy.linalg.lapack`)
=======================================================

This module contains low-level functions from the LAPACK library.

The `*gegv` family of routines have been removed from LAPACK 3.6.0
and have been deprecated in SciPy 0.17.0. They will be removed in
a future release.

.. versionadded:: 0.12.0

.. note::

    The common ``overwrite_<>`` option in many routines, allows the
    input arrays to be overwritten to avoid extra memory allocation.
    However this requires the array to satisfy two conditions
    which are memory order and the data type to match exactly the
    order and the type expected by the routine.

    As an example, if you pass a double precision float array to any
    ``S....`` routine which expects single precision arguments, f2py
    will create an intermediate array to match the argument types and
    overwriting will be performed on that intermediate array.

    Similarly, if a C-contiguous array is passed, f2py will pass a
    FORTRAN-contiguous array internally. Please make sure that these
    details are satisfied. More information can be found in the f2py
    documentation.

.. warning::

   These functions do little to no error checking.
   It is possible to cause crashes by mis-using them,
   so prefer using the higher-level routines in `scipy.linalg`.

Finding functions
-----------------

.. autosummary::

   get_lapack_funcs

All functions
-------------

.. autosummary::
   :toctree: generated/


   sgbsv
   dgbsv
   cgbsv
   zgbsv

   sgbtrf
   dgbtrf
   cgbtrf
   zgbtrf

   sgbtrs
   dgbtrs
   cgbtrs
   zgbtrs

   sgebal
   dgebal
   cgebal
   zgebal

   sgees
   dgees
   cgees
   zgees

   sgeev
   dgeev
   cgeev
   zgeev

   sgeev_lwork
   dgeev_lwork
   cgeev_lwork
   zgeev_lwork

   sgegv
   dgegv
   cgegv
   zgegv

   sgehrd
   dgehrd
   cgehrd
   zgehrd

   sgehrd_lwork
   dgehrd_lwork
   cgehrd_lwork
   zgehrd_lwork

   sgelss
   dgelss
   cgelss
   zgelss

   sgelss_lwork
   dgelss_lwork
   cgelss_lwork
   zgelss_lwork

   sgelsd
   dgelsd
   cgelsd
   zgelsd

   sgelsd_lwork
   dgelsd_lwork
   cgelsd_lwork
   zgelsd_lwork

   sgelsy
   dgelsy
   cgelsy
   zgelsy

   sgelsy_lwork
   dgelsy_lwork
   cgelsy_lwork
   zgelsy_lwork

   sgeqp3
   dgeqp3
   cgeqp3
   zgeqp3

   sgeqrf
   dgeqrf
   cgeqrf
   zgeqrf

   sgerqf
   dgerqf
   cgerqf
   zgerqf

   sgesdd
   dgesdd
   cgesdd
   zgesdd

   sgesdd_lwork
   dgesdd_lwork
   cgesdd_lwork
   zgesdd_lwork

   sgesvd
   dgesvd
   cgesvd
   zgesvd

   sgesvd_lwork
   dgesvd_lwork
   cgesvd_lwork
   zgesvd_lwork

   sgesv
   dgesv
   cgesv
   zgesv

   sgesvx
   dgesvx
   cgesvx
   zgesvx

   sgecon
   dgecon
   cgecon
   zgecon

   ssysv
   dsysv
   csysv
   zsysv

   ssysv_lwork
   dsysv_lwork
   csysv_lwork
   zsysv_lwork

   ssysvx
   dsysvx
   csysvx
   zsysvx

   ssysvx_lwork
   dsysvx_lwork
   csysvx_lwork
   zsysvx_lwork

   ssygst
   dsygst

   ssytrd
   dsytrd

   ssytrd_lwork
   dsytrd_lwork

   chetrd
   zhetrd

   chetrd_lwork
   zhetrd_lwork

   chesv
   zhesv

   chesv_lwork
   zhesv_lwork

   chesvx
   zhesvx

   chesvx_lwork
   zhesvx_lwork

   chegst
   zhegst

   sgetrf
   dgetrf
   cgetrf
   zgetrf

   sgetri
   dgetri
   cgetri
   zgetri

   sgetri_lwork
   dgetri_lwork
   cgetri_lwork
   zgetri_lwork

   sgetrs
   dgetrs
   cgetrs
   zgetrs

   sgges
   dgges
   cgges
   zgges

   sggev
   dggev
   cggev
   zggev

   chbevd
   zhbevd

   chbevx
   zhbevx

   cheev
   zheev

   cheevd
   zheevd

   cheevr
   zheevr

   chegv
   zhegv

   chegvd
   zhegvd

   chegvx
   zhegvx

   slarf
   dlarf
   clarf
   zlarf

   slarfg
   dlarfg
   clarfg
   zlarfg

   slartg
   dlartg
   clartg
   zlartg

   slasd4
   dlasd4

   slaswp
   dlaswp
   claswp
   zlaswp

   slauum
   dlauum
   clauum
   zlauum

   spbsv
   dpbsv
   cpbsv
   zpbsv

   spbtrf
   dpbtrf
   cpbtrf
   zpbtrf

   spbtrs
   dpbtrs
   cpbtrs
   zpbtrs

   sposv
   dposv
   cposv
   zposv

   sposvx
   dposvx
   cposvx
   zposvx

   spocon
   dpocon
   cpocon
   zpocon

   spotrf
   dpotrf
   cpotrf
   zpotrf

   spotri
   dpotri
   cpotri
   zpotri

   spotrs
   dpotrs
   cpotrs
   zpotrs

   crot
   zrot

   strsyl
   dtrsyl
   ctrsyl
   ztrsyl

   strtri
   dtrtri
   ctrtri
   ztrtri

   strtrs
   dtrtrs
   ctrtrs
   ztrtrs

   cunghr
   zunghr

   cungqr
   zungqr

   cungrq
   zungrq

   cunmqr
   zunmqr

   sgtsv
   dgtsv
   cgtsv
   zgtsv

   sptsv
   dptsv
   cptsv
   zptsv

   slamch
   dlamch

   sorghr
   dorghr
   sorgqr
   dorgqr

   sorgrq
   dorgrq

   sormqr
   dormqr

   ssbev
   dsbev

   ssbevd
   dsbevd

   ssbevx
   dsbevx

   sstebz
   dstebz

   sstemr
   dstemr

   ssterf
   dsterf

   sstein
   dstein

   sstev
   dstev

   ssyev
   dsyev

   ssyevd
   dsyevd

   ssyevr
   dsyevr

   ssygv
   dsygv

   ssygvd
   dsygvd

   ssygvx
   dsygvx

   slange
   dlange
   clange
   zlange

   ilaver

"""
#
# Author: Pearu Peterson, March 2002
#

from __future__ import division, print_function, absolute_import

__all__ = ['get_lapack_funcs']

import numpy as _np

from .blas import _get_funcs

# Backward compatibility:
from .blas import find_best_blas_type as find_best_lapack_type

from scipy.linalg import _flapack
try:
    from scipy.linalg import _clapack
except ImportError:
    _clapack = None

# Backward compatibility
from scipy._lib._util import DeprecatedImport as _DeprecatedImport
clapack = _DeprecatedImport("scipy.linalg.blas.clapack", "scipy.linalg.lapack")
flapack = _DeprecatedImport("scipy.linalg.blas.flapack", "scipy.linalg.lapack")

# Expose all functions (only flapack --- clapack is an implementation detail)
empty_module = None
from scipy.linalg._flapack import *
del empty_module

_dep_message = """The `*gegv` family of routines has been deprecated in
LAPACK 3.6.0 in favor of the `*ggev` family of routines.
The corresponding wrappers will be removed from SciPy in
a future release."""

cgegv = _np.deprecate(cgegv, old_name='cgegv', message=_dep_message)
dgegv = _np.deprecate(dgegv, old_name='dgegv', message=_dep_message)
sgegv = _np.deprecate(sgegv, old_name='sgegv', message=_dep_message)
zgegv = _np.deprecate(zgegv, old_name='zgegv', message=_dep_message)

# Modyfy _flapack in this scope so the deprecation warnings apply to
# functions returned by get_lapack_funcs.
_flapack.cgegv = cgegv
_flapack.dgegv = dgegv
_flapack.sgegv = sgegv
_flapack.zgegv = zgegv

# some convenience alias for complex functions
_lapack_alias = {
    'corghr': 'cunghr', 'zorghr': 'zunghr',
    'corghr_lwork': 'cunghr_lwork', 'zorghr_lwork': 'zunghr_lwork',
    'corgqr': 'cungqr', 'zorgqr': 'zungqr',
    'cormqr': 'cunmqr', 'zormqr': 'zunmqr',
    'corgrq': 'cungrq', 'zorgrq': 'zungrq',
}


def get_lapack_funcs(names, arrays=(), dtype=None):
    """Return available LAPACK function objects from names.

    Arrays are used to determine the optimal prefix of LAPACK routines.

    Parameters
    ----------
    names : str or sequence of str
        Name(s) of LAPACK functions without type prefix.

    arrays : sequence of ndarrays, optional
        Arrays can be given to determine optimal prefix of LAPACK
        routines. If not given, double-precision routines will be
        used, otherwise the most generic type in arrays will be used.

    dtype : str or dtype, optional
        Data-type specifier. Not used if `arrays` is non-empty.

    Returns
    -------
    funcs : list
        List containing the found function(s).

    Notes
    -----
    This routine automatically chooses between Fortran/C
    interfaces. Fortran code is used whenever possible for arrays with
    column major order. In all other cases, C code is preferred.

    In LAPACK, the naming convention is that all functions start with a
    type prefix, which depends on the type of the principal
    matrix. These can be one of {'s', 'd', 'c', 'z'} for the numpy
    types {float32, float64, complex64, complex128} respectively, and
    are stored in attribute ``typecode`` of the returned functions.

    Examples
    --------
    Suppose we would like to use '?lange' routine which computes the selected
    norm of an array. We pass our array in order to get the correct 'lange'
    flavor.

    >>> import scipy.linalg as LA
    >>> a = np.random.rand(3,2)
    >>> x_lange = LA.get_lapack_funcs('lange', (a,))
    >>> x_lange.typecode
    'd'
    >>> x_lange = LA.get_lapack_funcs('lange',(a*1j,))
    >>> x_lange.typecode
    'z'

    Several LAPACK routines work best when its internal WORK array has
    the optimal size (big enough for fast computation and small enough to
    avoid waste of memory). This size is determined also by a dedicated query
    to the function which is often wrapped as a standalone function and
    commonly denoted as ``###_lwork``. Below is an example for ``?sysv``

    >>> import scipy.linalg as LA
    >>> a = np.random.rand(1000,1000)
    >>> b = np.random.rand(1000,1)*1j
    >>> # We pick up zsysv and zsysv_lwork due to b array
    ... xsysv, xlwork = LA.get_lapack_funcs(('sysv', 'sysv_lwork'), (a, b))
    >>> opt_lwork, _ = xlwork(a.shape[0])  # returns a complex for 'z' prefix
    >>> udut, ipiv, x, info = xsysv(a, b, lwork=int(opt_lwork.real))

    """
    return _get_funcs(names, arrays, dtype,
                      "LAPACK", _flapack, _clapack,
                      "flapack", "clapack", _lapack_alias)


def _compute_lwork(routine, *args, **kwargs):
    """
    Round floating-point lwork returned by lapack to integer.

    Several LAPACK routines compute optimal values for LWORK, which
    they return in a floating-point variable. However, for large
    values of LWORK, single-precision floating point is not sufficient
    to hold the exact value --- some LAPACK versions (<= 3.5.0 at
    least) truncate the returned integer to single precision and in
    some cases this can be smaller than the required value.

    Examples
    --------
    >>> from scipy.linalg import lapack
    >>> n = 5000
    >>> s_r, s_lw = lapack.get_lapack_funcs(('sysvx', 'sysvx_lwork'))
    >>> lwork = lapack._compute_lwork(s_lw, n)
    >>> lwork
    32000

    """
    wi = routine(*args, **kwargs)
    if len(wi) < 2:
        raise ValueError('')
    info = wi[-1]
    if info != 0:
        raise ValueError("Internal work array size computation failed: "
                         "%d" % (info,))

    lwork = [w.real for w in wi[:-1]]

    dtype = getattr(routine, 'dtype', None)
    if dtype == _np.float32 or dtype == _np.complex64:
        # Single-precision routine -- take next fp value to work
        # around possible truncation in LAPACK code
        lwork = _np.nextafter(lwork, _np.inf, dtype=_np.float32)

    lwork = _np.array(lwork, _np.int64)
    if _np.any(_np.logical_or(lwork < 0, lwork > _np.iinfo(_np.int32).max)):
        raise ValueError("Too large work array required -- computation cannot "
                         "be performed with standard 32-bit LAPACK.")
    lwork = lwork.astype(_np.int32)
    if lwork.size == 1:
        return lwork[0]
    return lwork