File: filters.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (1431 lines) | stat: -rw-r--r-- 49,136 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import division, print_function, absolute_import
import warnings

import math
import numpy
from . import _ni_support
from . import _nd_image
from . import _ni_docstrings
from scipy.misc import doccer
from scipy._lib._version import NumpyVersion

__all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter',
           'prewitt', 'sobel', 'generic_laplace', 'laplace',
           'gaussian_laplace', 'generic_gradient_magnitude',
           'gaussian_gradient_magnitude', 'correlate', 'convolve',
           'uniform_filter1d', 'uniform_filter', 'minimum_filter1d',
           'maximum_filter1d', 'minimum_filter', 'maximum_filter',
           'rank_filter', 'median_filter', 'percentile_filter',
           'generic_filter1d', 'generic_filter']


@_ni_docstrings.docfiller
def correlate1d(input, weights, axis=-1, output=None, mode="reflect",
                cval=0.0, origin=0):
    """Calculate a one-dimensional correlation along the given axis.

    The lines of the array along the given axis are correlated with the
    given weights.

    Parameters
    ----------
    %(input)s
    weights : array
        One-dimensional sequence of numbers.
    %(axis)s
    %(output)s
    %(mode)s
    %(cval)s
    %(origin)s

    Examples
    --------
    >>> from scipy.ndimage import correlate1d
    >>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
    array([ 8, 26,  8, 12,  7, 28, 36,  9])
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    output = _ni_support._get_output(output, input)
    weights = numpy.asarray(weights, dtype=numpy.float64)
    if weights.ndim != 1 or weights.shape[0] < 1:
        raise RuntimeError('no filter weights given')
    if not weights.flags.contiguous:
        weights = weights.copy()
    axis = _ni_support._check_axis(axis, input.ndim)
    if (len(weights) // 2 + origin < 0) or (len(weights) // 2 +
                                            origin > len(weights)):
        raise ValueError('invalid origin')
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.correlate1d(input, weights, axis, output, mode, cval,
                          origin)
    return output


@_ni_docstrings.docfiller
def convolve1d(input, weights, axis=-1, output=None, mode="reflect",
               cval=0.0, origin=0):
    """Calculate a one-dimensional convolution along the given axis.

    The lines of the array along the given axis are convolved with the
    given weights.

    Parameters
    ----------
    %(input)s
    weights : ndarray
        One-dimensional sequence of numbers.
    %(axis)s
    %(output)s
    %(mode)s
    %(cval)s
    %(origin)s

    Returns
    -------
    convolve1d : ndarray
        Convolved array with same shape as input

    Examples
    --------
    >>> from scipy.ndimage import convolve1d
    >>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
    array([14, 24,  4, 13, 12, 36, 27,  0])
    """
    weights = weights[::-1]
    origin = -origin
    if not len(weights) & 1:
        origin -= 1
    return correlate1d(input, weights, axis, output, mode, cval, origin)


def _gaussian_kernel1d(sigma, order, radius):
    """
    Computes a 1D Gaussian convolution kernel.
    """
    if order < 0:
        raise ValueError('order must be non-negative')
    p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)])
    x = numpy.arange(-radius, radius + 1)
    phi_x = numpy.exp(p(x), dtype=numpy.double)
    phi_x /= phi_x.sum()
    if order > 0:
        q = numpy.polynomial.Polynomial([1])
        p_deriv = p.deriv()
        for _ in range(order):
            # f(x) = q(x) * phi(x) = q(x) * exp(p(x))
            # f'(x) = (q'(x) + q(x) * p'(x)) * phi(x)
            q = q.deriv() + q * p_deriv
        phi_x *= q(x)
    return phi_x


@_ni_docstrings.docfiller
def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None,
                      mode="reflect", cval=0.0, truncate=4.0):
    """One-dimensional Gaussian filter.

    Parameters
    ----------
    %(input)s
    sigma : scalar
        standard deviation for Gaussian kernel
    %(axis)s
    order : int, optional
        An order of 0 corresponds to convolution with a Gaussian
        kernel. A positive order corresponds to convolution with
        that derivative of a Gaussian.
    %(output)s
    %(mode)s
    %(cval)s
    truncate : float, optional
        Truncate the filter at this many standard deviations.
        Default is 4.0.

    Returns
    -------
    gaussian_filter1d : ndarray

    Examples
    --------
    >>> from scipy.ndimage import gaussian_filter1d
    >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1)
    array([ 1.42704095,  2.06782203,  3.        ,  3.93217797,  4.57295905])
    >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4)
    array([ 2.91948343,  2.95023502,  3.        ,  3.04976498,  3.08051657])
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(280490)
    >>> x = np.random.randn(101).cumsum()
    >>> y3 = gaussian_filter1d(x, 3)
    >>> y6 = gaussian_filter1d(x, 6)
    >>> plt.plot(x, 'k', label='original data')
    >>> plt.plot(y3, '--', label='filtered, sigma=3')
    >>> plt.plot(y6, ':', label='filtered, sigma=6')
    >>> plt.legend()
    >>> plt.grid()
    >>> plt.show()
    """
    sd = float(sigma)
    # make the radius of the filter equal to truncate standard deviations
    lw = int(truncate * sd + 0.5)
    # Since we are calling correlate, not convolve, revert the kernel
    weights = _gaussian_kernel1d(sigma, order, lw)[::-1]
    return correlate1d(input, weights, axis, output, mode, cval, 0)


@_ni_docstrings.docfiller
def gaussian_filter(input, sigma, order=0, output=None,
                    mode="reflect", cval=0.0, truncate=4.0):
    """Multidimensional Gaussian filter.

    Parameters
    ----------
    %(input)s
    sigma : scalar or sequence of scalars
        Standard deviation for Gaussian kernel. The standard
        deviations of the Gaussian filter are given for each axis as a
        sequence, or as a single number, in which case it is equal for
        all axes.
    order : int or sequence of ints, optional
        The order of the filter along each axis is given as a sequence
        of integers, or as a single number.  An order of 0 corresponds
        to convolution with a Gaussian kernel. A positive order
        corresponds to convolution with that derivative of a Gaussian.
    %(output)s
    %(mode_multiple)s
    %(cval)s
    truncate : float
        Truncate the filter at this many standard deviations.
        Default is 4.0.

    Returns
    -------
    gaussian_filter : ndarray
        Returned array of same shape as `input`.

    Notes
    -----
    The multidimensional filter is implemented as a sequence of
    one-dimensional convolution filters. The intermediate arrays are
    stored in the same data type as the output. Therefore, for output
    types with a limited precision, the results may be imprecise
    because intermediate results may be stored with insufficient
    precision.

    Examples
    --------
    >>> from scipy.ndimage import gaussian_filter
    >>> a = np.arange(50, step=2).reshape((5,5))
    >>> a
    array([[ 0,  2,  4,  6,  8],
           [10, 12, 14, 16, 18],
           [20, 22, 24, 26, 28],
           [30, 32, 34, 36, 38],
           [40, 42, 44, 46, 48]])
    >>> gaussian_filter(a, sigma=1)
    array([[ 4,  6,  8,  9, 11],
           [10, 12, 14, 15, 17],
           [20, 22, 24, 25, 27],
           [29, 31, 33, 34, 36],
           [35, 37, 39, 40, 42]])

    >>> from scipy import misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = gaussian_filter(ascent, sigma=5)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    input = numpy.asarray(input)
    output = _ni_support._get_output(output, input)
    orders = _ni_support._normalize_sequence(order, input.ndim)
    sigmas = _ni_support._normalize_sequence(sigma, input.ndim)
    modes = _ni_support._normalize_sequence(mode, input.ndim)
    axes = list(range(input.ndim))
    axes = [(axes[ii], sigmas[ii], orders[ii], modes[ii])
            for ii in range(len(axes)) if sigmas[ii] > 1e-15]
    if len(axes) > 0:
        for axis, sigma, order, mode in axes:
            gaussian_filter1d(input, sigma, axis, order, output,
                              mode, cval, truncate)
            input = output
    else:
        output[...] = input[...]
    return output


@_ni_docstrings.docfiller
def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0):
    """Calculate a Prewitt filter.

    Parameters
    ----------
    %(input)s
    %(axis)s
    %(output)s
    %(mode_multiple)s
    %(cval)s

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.prewitt(ascent)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    input = numpy.asarray(input)
    axis = _ni_support._check_axis(axis, input.ndim)
    output = _ni_support._get_output(output, input)
    modes = _ni_support._normalize_sequence(mode, input.ndim)
    correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0)
    axes = [ii for ii in range(input.ndim) if ii != axis]
    for ii in axes:
        correlate1d(output, [1, 1, 1], ii, output, modes[ii], cval, 0,)
    return output


@_ni_docstrings.docfiller
def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0):
    """Calculate a Sobel filter.

    Parameters
    ----------
    %(input)s
    %(axis)s
    %(output)s
    %(mode_multiple)s
    %(cval)s

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.sobel(ascent)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    input = numpy.asarray(input)
    axis = _ni_support._check_axis(axis, input.ndim)
    output = _ni_support._get_output(output, input)
    modes = _ni_support._normalize_sequence(mode, input.ndim)
    correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0)
    axes = [ii for ii in range(input.ndim) if ii != axis]
    for ii in axes:
        correlate1d(output, [1, 2, 1], ii, output, modes[ii], cval, 0)
    return output


@_ni_docstrings.docfiller
def generic_laplace(input, derivative2, output=None, mode="reflect",
                    cval=0.0,
                    extra_arguments=(),
                    extra_keywords=None):
    """
    N-dimensional Laplace filter using a provided second derivative function.

    Parameters
    ----------
    %(input)s
    derivative2 : callable
        Callable with the following signature::

            derivative2(input, axis, output, mode, cval,
                        *extra_arguments, **extra_keywords)

        See `extra_arguments`, `extra_keywords` below.
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(extra_keywords)s
    %(extra_arguments)s
    """
    if extra_keywords is None:
        extra_keywords = {}
    input = numpy.asarray(input)
    output = _ni_support._get_output(output, input)
    axes = list(range(input.ndim))
    if len(axes) > 0:
        modes = _ni_support._normalize_sequence(mode, len(axes))
        derivative2(input, axes[0], output, modes[0], cval,
                    *extra_arguments, **extra_keywords)
        for ii in range(1, len(axes)):
            tmp = derivative2(input, axes[ii], output.dtype, modes[ii], cval,
                              *extra_arguments, **extra_keywords)
            output += tmp
    else:
        output[...] = input[...]
    return output


@_ni_docstrings.docfiller
def laplace(input, output=None, mode="reflect", cval=0.0):
    """N-dimensional Laplace filter based on approximate second derivatives.

    Parameters
    ----------
    %(input)s
    %(output)s
    %(mode_multiple)s
    %(cval)s

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.laplace(ascent)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    def derivative2(input, axis, output, mode, cval):
        return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
    return generic_laplace(input, derivative2, output, mode, cval)


@_ni_docstrings.docfiller
def gaussian_laplace(input, sigma, output=None, mode="reflect",
                     cval=0.0, **kwargs):
    """Multidimensional Laplace filter using gaussian second derivatives.

    Parameters
    ----------
    %(input)s
    sigma : scalar or sequence of scalars
        The standard deviations of the Gaussian filter are given for
        each axis as a sequence, or as a single number, in which case
        it is equal for all axes.
    %(output)s
    %(mode_multiple)s
    %(cval)s
    Extra keyword arguments will be passed to gaussian_filter().

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> ascent = misc.ascent()

    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side

    >>> result = ndimage.gaussian_laplace(ascent, sigma=1)
    >>> ax1.imshow(result)

    >>> result = ndimage.gaussian_laplace(ascent, sigma=3)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    input = numpy.asarray(input)

    def derivative2(input, axis, output, mode, cval, sigma, **kwargs):
        order = [0] * input.ndim
        order[axis] = 2
        return gaussian_filter(input, sigma, order, output, mode, cval,
                               **kwargs)

    return generic_laplace(input, derivative2, output, mode, cval,
                           extra_arguments=(sigma,),
                           extra_keywords=kwargs)


@_ni_docstrings.docfiller
def generic_gradient_magnitude(input, derivative, output=None,
                               mode="reflect", cval=0.0,
                               extra_arguments=(), extra_keywords=None):
    """Gradient magnitude using a provided gradient function.

    Parameters
    ----------
    %(input)s
    derivative : callable
        Callable with the following signature::

            derivative(input, axis, output, mode, cval,
                       *extra_arguments, **extra_keywords)

        See `extra_arguments`, `extra_keywords` below.
        `derivative` can assume that `input` and `output` are ndarrays.
        Note that the output from `derivative` is modified inplace;
        be careful to copy important inputs before returning them.
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(extra_keywords)s
    %(extra_arguments)s
    """
    if extra_keywords is None:
        extra_keywords = {}
    input = numpy.asarray(input)
    output = _ni_support._get_output(output, input)
    axes = list(range(input.ndim))
    if len(axes) > 0:
        modes = _ni_support._normalize_sequence(mode, len(axes))
        derivative(input, axes[0], output, modes[0], cval,
                   *extra_arguments, **extra_keywords)
        numpy.multiply(output, output, output)
        for ii in range(1, len(axes)):
            tmp = derivative(input, axes[ii], output.dtype, modes[ii], cval,
                             *extra_arguments, **extra_keywords)
            numpy.multiply(tmp, tmp, tmp)
            output += tmp
        # This allows the sqrt to work with a different default casting
        numpy.sqrt(output, output, casting='unsafe')
    else:
        output[...] = input[...]
    return output


@_ni_docstrings.docfiller
def gaussian_gradient_magnitude(input, sigma, output=None,
                                mode="reflect", cval=0.0, **kwargs):
    """Multidimensional gradient magnitude using Gaussian derivatives.

    Parameters
    ----------
    %(input)s
    sigma : scalar or sequence of scalars
        The standard deviations of the Gaussian filter are given for
        each axis as a sequence, or as a single number, in which case
        it is equal for all axes..
    %(output)s
    %(mode_multiple)s
    %(cval)s
    Extra keyword arguments will be passed to gaussian_filter().

    Returns
    -------
    gaussian_gradient_magnitude : ndarray
        Filtered array. Has the same shape as `input`.

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    input = numpy.asarray(input)

    def derivative(input, axis, output, mode, cval, sigma, **kwargs):
        order = [0] * input.ndim
        order[axis] = 1
        return gaussian_filter(input, sigma, order, output, mode,
                               cval, **kwargs)

    return generic_gradient_magnitude(input, derivative, output, mode,
                                      cval, extra_arguments=(sigma,),
                                      extra_keywords=kwargs)


def _correlate_or_convolve(input, weights, output, mode, cval, origin,
                           convolution):
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    origins = _ni_support._normalize_sequence(origin, input.ndim)
    weights = numpy.asarray(weights, dtype=numpy.float64)
    wshape = [ii for ii in weights.shape if ii > 0]
    if len(wshape) != input.ndim:
        raise RuntimeError('filter weights array has incorrect shape.')
    if convolution:
        weights = weights[tuple([slice(None, None, -1)] * weights.ndim)]
        for ii in range(len(origins)):
            origins[ii] = -origins[ii]
            if not weights.shape[ii] & 1:
                origins[ii] -= 1
    for origin, lenw in zip(origins, wshape):
        if (lenw // 2 + origin < 0) or (lenw // 2 + origin > lenw):
            raise ValueError('invalid origin')
    if not weights.flags.contiguous:
        weights = weights.copy()
    output = _ni_support._get_output(output, input)
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.correlate(input, weights, output, mode, cval, origins)
    return output


@_ni_docstrings.docfiller
def correlate(input, weights, output=None, mode='reflect', cval=0.0,
              origin=0):
    """
    Multi-dimensional correlation.

    The array is correlated with the given kernel.

    Parameters
    ----------
    %(input)s
    weights : ndarray
        array of weights, same number of dimensions as input
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s

    See Also
    --------
    convolve : Convolve an image with a kernel.
    """
    return _correlate_or_convolve(input, weights, output, mode, cval,
                                  origin, False)


@_ni_docstrings.docfiller
def convolve(input, weights, output=None, mode='reflect', cval=0.0,
             origin=0):
    """
    Multidimensional convolution.

    The array is convolved with the given kernel.

    Parameters
    ----------
    %(input)s
    weights : array_like
        Array of weights, same number of dimensions as input
    %(output)s
    %(mode_multiple)s
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0
    %(origin_multiple)s

    Returns
    -------
    result : ndarray
        The result of convolution of `input` with `weights`.

    See Also
    --------
    correlate : Correlate an image with a kernel.

    Notes
    -----
    Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where
    W is the `weights` kernel,
    j is the n-D spatial index over :math:`W`,
    I is the `input` and k is the coordinate of the center of
    W, specified by `origin` in the input parameters.

    Examples
    --------
    Perhaps the simplest case to understand is ``mode='constant', cval=0.0``,
    because in this case borders (i.e. where the `weights` kernel, centered
    on any one value, extends beyond an edge of `input`.

    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
    >>> from scipy import ndimage
    >>> ndimage.convolve(a, k, mode='constant', cval=0.0)
    array([[11, 10,  7,  4],
           [10,  3, 11, 11],
           [15, 12, 14,  7],
           [12,  3,  7,  0]])

    Setting ``cval=1.0`` is equivalent to padding the outer edge of `input`
    with 1.0's (and then extracting only the original region of the result).

    >>> ndimage.convolve(a, k, mode='constant', cval=1.0)
    array([[13, 11,  8,  7],
           [11,  3, 11, 14],
           [16, 12, 14, 10],
           [15,  6, 10,  5]])

    With ``mode='reflect'`` (the default), outer values are reflected at the
    edge of `input` to fill in missing values.

    >>> b = np.array([[2, 0, 0],
    ...               [1, 0, 0],
    ...               [0, 0, 0]])
    >>> k = np.array([[0,1,0], [0,1,0], [0,1,0]])
    >>> ndimage.convolve(b, k, mode='reflect')
    array([[5, 0, 0],
           [3, 0, 0],
           [1, 0, 0]])

    This includes diagonally at the corners.

    >>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
    >>> ndimage.convolve(b, k)
    array([[4, 2, 0],
           [3, 2, 0],
           [1, 1, 0]])

    With ``mode='nearest'``, the single nearest value in to an edge in
    `input` is repeated as many times as needed to match the overlapping
    `weights`.

    >>> c = np.array([[2, 0, 1],
    ...               [1, 0, 0],
    ...               [0, 0, 0]])
    >>> k = np.array([[0, 1, 0],
    ...               [0, 1, 0],
    ...               [0, 1, 0],
    ...               [0, 1, 0],
    ...               [0, 1, 0]])
    >>> ndimage.convolve(c, k, mode='nearest')
    array([[7, 0, 3],
           [5, 0, 2],
           [3, 0, 1]])

    """
    return _correlate_or_convolve(input, weights, output, mode, cval,
                                  origin, True)


@_ni_docstrings.docfiller
def uniform_filter1d(input, size, axis=-1, output=None,
                     mode="reflect", cval=0.0, origin=0):
    """Calculate a one-dimensional uniform filter along the given axis.

    The lines of the array along the given axis are filtered with a
    uniform filter of given size.

    Parameters
    ----------
    %(input)s
    size : int
        length of uniform filter
    %(axis)s
    %(output)s
    %(mode)s
    %(cval)s
    %(origin)s

    Examples
    --------
    >>> from scipy.ndimage import uniform_filter1d
    >>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
    array([4, 3, 4, 1, 4, 6, 6, 3])
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    axis = _ni_support._check_axis(axis, input.ndim)
    if size < 1:
        raise RuntimeError('incorrect filter size')
    output = _ni_support._get_output(output, input)
    if (size // 2 + origin < 0) or (size // 2 + origin >= size):
        raise ValueError('invalid origin')
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.uniform_filter1d(input, size, axis, output, mode, cval,
                               origin)
    return output


@_ni_docstrings.docfiller
def uniform_filter(input, size=3, output=None, mode="reflect",
                   cval=0.0, origin=0):
    """Multi-dimensional uniform filter.

    Parameters
    ----------
    %(input)s
    size : int or sequence of ints, optional
        The sizes of the uniform filter are given for each axis as a
        sequence, or as a single number, in which case the size is
        equal for all axes.
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s

    Returns
    -------
    uniform_filter : ndarray
        Filtered array. Has the same shape as `input`.

    Notes
    -----
    The multi-dimensional filter is implemented as a sequence of
    one-dimensional uniform filters. The intermediate arrays are stored
    in the same data type as the output. Therefore, for output types
    with a limited precision, the results may be imprecise because
    intermediate results may be stored with insufficient precision.

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.uniform_filter(ascent, size=20)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    input = numpy.asarray(input)
    output = _ni_support._get_output(output, input)
    sizes = _ni_support._normalize_sequence(size, input.ndim)
    origins = _ni_support._normalize_sequence(origin, input.ndim)
    modes = _ni_support._normalize_sequence(mode, input.ndim)
    axes = list(range(input.ndim))
    axes = [(axes[ii], sizes[ii], origins[ii], modes[ii])
            for ii in range(len(axes)) if sizes[ii] > 1]
    if len(axes) > 0:
        for axis, size, origin, mode in axes:
            uniform_filter1d(input, int(size), axis, output, mode,
                             cval, origin)
            input = output
    else:
        output[...] = input[...]
    return output


@_ni_docstrings.docfiller
def minimum_filter1d(input, size, axis=-1, output=None,
                     mode="reflect", cval=0.0, origin=0):
    """Calculate a one-dimensional minimum filter along the given axis.

    The lines of the array along the given axis are filtered with a
    minimum filter of given size.

    Parameters
    ----------
    %(input)s
    size : int
        length along which to calculate 1D minimum
    %(axis)s
    %(output)s
    %(mode)s
    %(cval)s
    %(origin)s

    Notes
    -----
    This function implements the MINLIST algorithm [1]_, as described by
    Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being
    the `input` length, regardless of filter size.

    References
    ----------
    .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
    .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html


    Examples
    --------
    >>> from scipy.ndimage import minimum_filter1d
    >>> minimum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
    array([2, 0, 0, 0, 1, 1, 0, 0])
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    axis = _ni_support._check_axis(axis, input.ndim)
    if size < 1:
        raise RuntimeError('incorrect filter size')
    output = _ni_support._get_output(output, input)
    if (size // 2 + origin < 0) or (size // 2 + origin >= size):
        raise ValueError('invalid origin')
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval,
                                  origin, 1)
    return output


@_ni_docstrings.docfiller
def maximum_filter1d(input, size, axis=-1, output=None,
                     mode="reflect", cval=0.0, origin=0):
    """Calculate a one-dimensional maximum filter along the given axis.

    The lines of the array along the given axis are filtered with a
    maximum filter of given size.

    Parameters
    ----------
    %(input)s
    size : int
        Length along which to calculate the 1-D maximum.
    %(axis)s
    %(output)s
    %(mode)s
    %(cval)s
    %(origin)s

    Returns
    -------
    maximum1d : ndarray, None
        Maximum-filtered array with same shape as input.
        None if `output` is not None

    Notes
    -----
    This function implements the MAXLIST algorithm [1]_, as described by
    Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being
    the `input` length, regardless of filter size.

    References
    ----------
    .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
    .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html

    Examples
    --------
    >>> from scipy.ndimage import maximum_filter1d
    >>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
    array([8, 8, 8, 4, 9, 9, 9, 9])
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    axis = _ni_support._check_axis(axis, input.ndim)
    if size < 1:
        raise RuntimeError('incorrect filter size')
    output = _ni_support._get_output(output, input)
    if (size // 2 + origin < 0) or (size // 2 + origin >= size):
        raise ValueError('invalid origin')
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval,
                                  origin, 0)
    return output


def _min_or_max_filter(input, size, footprint, structure, output, mode,
                       cval, origin, minimum):
    if (size is not None) and (footprint is not None):
        warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=3)
    if structure is None:
        if footprint is None:
            if size is None:
                raise RuntimeError("no footprint provided")
            separable = True
        else:
            footprint = numpy.asarray(footprint, dtype=bool)
            if not footprint.any():
                raise ValueError("All-zero footprint is not supported.")
            if footprint.all():
                size = footprint.shape
                footprint = None
                separable = True
            else:
                separable = False
    else:
        structure = numpy.asarray(structure, dtype=numpy.float64)
        separable = False
        if footprint is None:
            footprint = numpy.ones(structure.shape, bool)
        else:
            footprint = numpy.asarray(footprint, dtype=bool)
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    output = _ni_support._get_output(output, input)
    origins = _ni_support._normalize_sequence(origin, input.ndim)
    if separable:
        sizes = _ni_support._normalize_sequence(size, input.ndim)
        modes = _ni_support._normalize_sequence(mode, input.ndim)
        axes = list(range(input.ndim))
        axes = [(axes[ii], sizes[ii], origins[ii], modes[ii])
                for ii in range(len(axes)) if sizes[ii] > 1]
        if minimum:
            filter_ = minimum_filter1d
        else:
            filter_ = maximum_filter1d
        if len(axes) > 0:
            for axis, size, origin, mode in axes:
                filter_(input, int(size), axis, output, mode, cval, origin)
                input = output
        else:
            output[...] = input[...]
    else:
        fshape = [ii for ii in footprint.shape if ii > 0]
        if len(fshape) != input.ndim:
            raise RuntimeError('footprint array has incorrect shape.')
        for origin, lenf in zip(origins, fshape):
            if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf):
                raise ValueError('invalid origin')
        if not footprint.flags.contiguous:
            footprint = footprint.copy()
        if structure is not None:
            if len(structure.shape) != input.ndim:
                raise RuntimeError('structure array has incorrect shape')
            if not structure.flags.contiguous:
                structure = structure.copy()
        mode = _ni_support._extend_mode_to_code(mode)
        _nd_image.min_or_max_filter(input, footprint, structure, output,
                                    mode, cval, origins, minimum)
    return output


@_ni_docstrings.docfiller
def minimum_filter(input, size=None, footprint=None, output=None,
                   mode="reflect", cval=0.0, origin=0):
    """Calculate a multi-dimensional minimum filter.

    Parameters
    ----------
    %(input)s
    %(size_foot)s
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s

    Returns
    -------
    minimum_filter : ndarray
        Filtered array. Has the same shape as `input`.

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.minimum_filter(ascent, size=20)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    return _min_or_max_filter(input, size, footprint, None, output, mode,
                              cval, origin, 1)


@_ni_docstrings.docfiller
def maximum_filter(input, size=None, footprint=None, output=None,
                   mode="reflect", cval=0.0, origin=0):
    """Calculate a multi-dimensional maximum filter.

    Parameters
    ----------
    %(input)s
    %(size_foot)s
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s

    Returns
    -------
    maximum_filter : ndarray
        Filtered array. Has the same shape as `input`.

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.maximum_filter(ascent, size=20)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    return _min_or_max_filter(input, size, footprint, None, output, mode,
                              cval, origin, 0)


@_ni_docstrings.docfiller
def _rank_filter(input, rank, size=None, footprint=None, output=None,
                 mode="reflect", cval=0.0, origin=0, operation='rank'):
    if (size is not None) and (footprint is not None):
        warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=3)
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    origins = _ni_support._normalize_sequence(origin, input.ndim)
    if footprint is None:
        if size is None:
            raise RuntimeError("no footprint or filter size provided")
        sizes = _ni_support._normalize_sequence(size, input.ndim)
        footprint = numpy.ones(sizes, dtype=bool)
    else:
        footprint = numpy.asarray(footprint, dtype=bool)
    fshape = [ii for ii in footprint.shape if ii > 0]
    if len(fshape) != input.ndim:
        raise RuntimeError('filter footprint array has incorrect shape.')
    for origin, lenf in zip(origins, fshape):
        if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf):
            raise ValueError('invalid origin')
    if not footprint.flags.contiguous:
        footprint = footprint.copy()
    filter_size = numpy.where(footprint, 1, 0).sum()
    if operation == 'median':
        rank = filter_size // 2
    elif operation == 'percentile':
        percentile = rank
        if percentile < 0.0:
            percentile += 100.0
        if percentile < 0 or percentile > 100:
            raise RuntimeError('invalid percentile')
        if percentile == 100.0:
            rank = filter_size - 1
        else:
            rank = int(float(filter_size) * percentile / 100.0)
    if rank < 0:
        rank += filter_size
    if rank < 0 or rank >= filter_size:
        raise RuntimeError('rank not within filter footprint size')
    if rank == 0:
        return minimum_filter(input, None, footprint, output, mode, cval,
                              origins)
    elif rank == filter_size - 1:
        return maximum_filter(input, None, footprint, output, mode, cval,
                              origins)
    else:
        output = _ni_support._get_output(output, input)
        mode = _ni_support._extend_mode_to_code(mode)
        _nd_image.rank_filter(input, rank, footprint, output, mode, cval,
                              origins)
        return output


@_ni_docstrings.docfiller
def rank_filter(input, rank, size=None, footprint=None, output=None,
                mode="reflect", cval=0.0, origin=0):
    """Calculate a multi-dimensional rank filter.

    Parameters
    ----------
    %(input)s
    rank : int
        The rank parameter may be less then zero, i.e., rank = -1
        indicates the largest element.
    %(size_foot)s
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s

    Returns
    -------
    rank_filter : ndarray
        Filtered array. Has the same shape as `input`.

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.rank_filter(ascent, rank=42, size=20)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    return _rank_filter(input, rank, size, footprint, output, mode, cval,
                        origin, 'rank')


@_ni_docstrings.docfiller
def median_filter(input, size=None, footprint=None, output=None,
                  mode="reflect", cval=0.0, origin=0):
    """
    Calculate a multidimensional median filter.

    Parameters
    ----------
    %(input)s
    %(size_foot)s
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s

    Returns
    -------
    median_filter : ndarray
        Filtered array. Has the same shape as `input`.

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.median_filter(ascent, size=20)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    return _rank_filter(input, 0, size, footprint, output, mode, cval,
                        origin, 'median')


@_ni_docstrings.docfiller
def percentile_filter(input, percentile, size=None, footprint=None,
                      output=None, mode="reflect", cval=0.0, origin=0):
    """Calculate a multi-dimensional percentile filter.

    Parameters
    ----------
    %(input)s
    percentile : scalar
        The percentile parameter may be less then zero, i.e.,
        percentile = -20 equals percentile = 80
    %(size_foot)s
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s

    Returns
    -------
    percentile_filter : ndarray
        Filtered array. Has the same shape as `input`.

    Examples
    --------
    >>> from scipy import ndimage, misc
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> plt.gray()  # show the filtered result in grayscale
    >>> ax1 = fig.add_subplot(121)  # left side
    >>> ax2 = fig.add_subplot(122)  # right side
    >>> ascent = misc.ascent()
    >>> result = ndimage.percentile_filter(ascent, percentile=20, size=20)
    >>> ax1.imshow(ascent)
    >>> ax2.imshow(result)
    >>> plt.show()
    """
    return _rank_filter(input, percentile, size, footprint, output, mode,
                        cval, origin, 'percentile')


@_ni_docstrings.docfiller
def generic_filter1d(input, function, filter_size, axis=-1,
                     output=None, mode="reflect", cval=0.0, origin=0,
                     extra_arguments=(), extra_keywords=None):
    """Calculate a one-dimensional filter along the given axis.

    `generic_filter1d` iterates over the lines of the array, calling the
    given function at each line. The arguments of the line are the
    input line, and the output line. The input and output lines are 1D
    double arrays.  The input line is extended appropriately according
    to the filter size and origin. The output line must be modified
    in-place with the result.

    Parameters
    ----------
    %(input)s
    function : {callable, scipy.LowLevelCallable}
        Function to apply along given axis.
    filter_size : scalar
        Length of the filter.
    %(axis)s
    %(output)s
    %(mode)s
    %(cval)s
    %(origin)s
    %(extra_arguments)s
    %(extra_keywords)s

    Notes
    -----
    This function also accepts low-level callback functions with one of
    the following signatures and wrapped in `scipy.LowLevelCallable`:

    .. code:: c

       int function(double *input_line, npy_intp input_length,
                    double *output_line, npy_intp output_length,
                    void *user_data)
       int function(double *input_line, intptr_t input_length,
                    double *output_line, intptr_t output_length,
                    void *user_data)

    The calling function iterates over the lines of the input and output
    arrays, calling the callback function at each line. The current line
    is extended according to the border conditions set by the calling
    function, and the result is copied into the array that is passed
    through ``input_line``. The length of the input line (after extension)
    is passed through ``input_length``. The callback function should apply
    the filter and store the result in the array passed through
    ``output_line``. The length of the output line is passed through
    ``output_length``. ``user_data`` is the data pointer provided
    to `scipy.LowLevelCallable` as-is.

    The callback function must return an integer error status that is zero
    if something went wrong and one otherwise. If an error occurs, you should
    normally set the python error status with an informative message
    before returning, otherwise a default error message is set by the
    calling function.

    In addition, some other low-level function pointer specifications
    are accepted, but these are for backward compatibility only and should
    not be used in new code.

    """
    if extra_keywords is None:
        extra_keywords = {}
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    output = _ni_support._get_output(output, input)
    if filter_size < 1:
        raise RuntimeError('invalid filter size')
    axis = _ni_support._check_axis(axis, input.ndim)
    if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >=
                                           filter_size):
        raise ValueError('invalid origin')
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.generic_filter1d(input, function, filter_size, axis, output,
                               mode, cval, origin, extra_arguments,
                               extra_keywords)
    return output


@_ni_docstrings.docfiller
def generic_filter(input, function, size=None, footprint=None,
                   output=None, mode="reflect", cval=0.0, origin=0,
                   extra_arguments=(), extra_keywords=None):
    """Calculate a multi-dimensional filter using the given function.

    At each element the provided function is called. The input values
    within the filter footprint at that element are passed to the function
    as a 1D array of double values.

    Parameters
    ----------
    %(input)s
    function : {callable, scipy.LowLevelCallable}
        Function to apply at each element.
    %(size_foot)s
    %(output)s
    %(mode_multiple)s
    %(cval)s
    %(origin_multiple)s
    %(extra_arguments)s
    %(extra_keywords)s

    Notes
    -----
    This function also accepts low-level callback functions with one of
    the following signatures and wrapped in `scipy.LowLevelCallable`:

    .. code:: c

       int callback(double *buffer, npy_intp filter_size,
                    double *return_value, void *user_data)
       int callback(double *buffer, intptr_t filter_size,
                    double *return_value, void *user_data)

    The calling function iterates over the elements of the input and
    output arrays, calling the callback function at each element. The
    elements within the footprint of the filter at the current element are
    passed through the ``buffer`` parameter, and the number of elements
    within the footprint through ``filter_size``. The calculated value is
    returned in ``return_value``. ``user_data`` is the data pointer provided
    to `scipy.LowLevelCallable` as-is.

    The callback function must return an integer error status that is zero
    if something went wrong and one otherwise. If an error occurs, you should
    normally set the python error status with an informative message
    before returning, otherwise a default error message is set by the
    calling function.

    In addition, some other low-level function pointer specifications
    are accepted, but these are for backward compatibility only and should
    not be used in new code.

    """
    if (size is not None) and (footprint is not None):
        warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
    if extra_keywords is None:
        extra_keywords = {}
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    origins = _ni_support._normalize_sequence(origin, input.ndim)
    if footprint is None:
        if size is None:
            raise RuntimeError("no footprint or filter size provided")
        sizes = _ni_support._normalize_sequence(size, input.ndim)
        footprint = numpy.ones(sizes, dtype=bool)
    else:
        footprint = numpy.asarray(footprint, dtype=bool)
    fshape = [ii for ii in footprint.shape if ii > 0]
    if len(fshape) != input.ndim:
        raise RuntimeError('filter footprint array has incorrect shape.')
    for origin, lenf in zip(origins, fshape):
        if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf):
            raise ValueError('invalid origin')
    if not footprint.flags.contiguous:
        footprint = footprint.copy()
    output = _ni_support._get_output(output, input)
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.generic_filter(input, function, footprint, output, mode,
                             cval, origins, extra_arguments, extra_keywords)
    return output