1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
"""Hessian update strategies for quasi-Newton optimization methods."""
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.linalg import norm
from scipy.linalg import get_blas_funcs
from warnings import warn
__all__ = ['HessianUpdateStrategy', 'BFGS', 'SR1']
class HessianUpdateStrategy(object):
"""Interface for implementing Hessian update strategies.
Many optimization methods make use of Hessian (or inverse Hessian)
approximations, such as the quasi-Newton methods BFGS, SR1, L-BFGS.
Some of these approximations, however, do not actually need to store
the entire matrix or can compute the internal matrix product with a
given vector in a very efficiently manner. This class serves as an
abstract interface between the optimization algorithm and the
quasi-Newton update strategies, giving freedom of implementation
to store and update the internal matrix as efficiently as possible.
Different choices of initialization and update procedure will result
in different quasi-Newton strategies.
Four methods should be implemented in derived classes: ``initialize``,
``update``, ``dot`` and ``get_matrix``.
Notes
-----
Any instance of a class that implements this interface,
can be accepted by the method ``minimize`` and used by
the compatible solvers to approximate the Hessian (or
inverse Hessian) used by the optimization algorithms.
"""
def initialize(self, n, approx_type):
"""Initialize internal matrix.
Allocate internal memory for storing and updating
the Hessian or its inverse.
Parameters
----------
n : int
Problem dimension.
approx_type : {'hess', 'inv_hess'}
Selects either the Hessian or the inverse Hessian.
When set to 'hess' the Hessian will be stored and updated.
When set to 'inv_hess' its inverse will be used instead.
"""
raise NotImplementedError("The method ``initialize(n, approx_type)``"
" is not implemented.")
def update(self, delta_x, delta_grad):
"""Update internal matrix.
Update Hessian matrix or its inverse (depending on how 'approx_type'
is defined) using information about the last evaluated points.
Parameters
----------
delta_x : ndarray
The difference between two points the gradient
function have been evaluated at: ``delta_x = x2 - x1``.
delta_grad : ndarray
The difference between the gradients:
``delta_grad = grad(x2) - grad(x1)``.
"""
raise NotImplementedError("The method ``update(delta_x, delta_grad)``"
" is not implemented.")
def dot(self, p):
"""Compute the product of the internal matrix with the given vector.
Parameters
----------
p : array_like
1-d array representing a vector.
Returns
-------
Hp : array
1-d represents the result of multiplying the approximation matrix
by vector p.
"""
raise NotImplementedError("The method ``dot(p)``"
" is not implemented.")
def get_matrix(self):
"""Return current internal matrix.
Returns
-------
H : ndarray, shape (n, n)
Dense matrix containing either the Hessian
or its inverse (depending on how 'approx_type'
is defined).
"""
raise NotImplementedError("The method ``get_matrix(p)``"
" is not implemented.")
class FullHessianUpdateStrategy(HessianUpdateStrategy):
"""Hessian update strategy with full dimensional internal representation.
"""
_syr = get_blas_funcs('syr', dtype='d') # Symmetric rank 1 update
_syr2 = get_blas_funcs('syr2', dtype='d') # Symmetric rank 2 update
# Symmetric matrix-vector product
_symv = get_blas_funcs('symv', dtype='d')
def __init__(self, init_scale='auto'):
self.init_scale = init_scale
# Until initialize is called we can't really use the class,
# so it makes sense to set everything to None.
self.first_iteration = None
self.approx_type = None
self.B = None
self.H = None
def initialize(self, n, approx_type):
"""Initialize internal matrix.
Allocate internal memory for storing and updating
the Hessian or its inverse.
Parameters
----------
n : int
Problem dimension.
approx_type : {'hess', 'inv_hess'}
Selects either the Hessian or the inverse Hessian.
When set to 'hess' the Hessian will be stored and updated.
When set to 'inv_hess' its inverse will be used instead.
"""
self.first_iteration = True
self.n = n
self.approx_type = approx_type
if approx_type not in ('hess', 'inv_hess'):
raise ValueError("`approx_type` must be 'hess' or 'inv_hess'.")
# Create matrix
if self.approx_type == 'hess':
self.B = np.eye(n, dtype=float)
else:
self.H = np.eye(n, dtype=float)
def _auto_scale(self, delta_x, delta_grad):
# Heuristic to scale matrix at first iteration.
# Described in Nocedal and Wright "Numerical Optimization"
# p.143 formula (6.20).
s_norm2 = np.dot(delta_x, delta_x)
y_norm2 = np.dot(delta_grad, delta_grad)
ys = np.abs(np.dot(delta_grad, delta_x))
if ys == 0.0 or y_norm2 == 0 or s_norm2 == 0:
return 1
if self.approx_type == 'hess':
return y_norm2 / ys
else:
return ys / y_norm2
def _update_implementation(self, delta_x, delta_grad):
raise NotImplementedError("The method ``_update_implementation``"
" is not implemented.")
def update(self, delta_x, delta_grad):
"""Update internal matrix.
Update Hessian matrix or its inverse (depending on how 'approx_type'
is defined) using information about the last evaluated points.
Parameters
----------
delta_x : ndarray
The difference between two points the gradient
function have been evaluated at: ``delta_x = x2 - x1``.
delta_grad : ndarray
The difference between the gradients:
``delta_grad = grad(x2) - grad(x1)``.
"""
if np.all(delta_x == 0.0):
return
if np.all(delta_grad == 0.0):
warn('delta_grad == 0.0. Check if the approximated '
'function is linear. If the function is linear '
'better results can be obtained by defining the '
'Hessian as zero instead of using quasi-Newton '
'approximations.', UserWarning)
return
if self.first_iteration:
# Get user specific scale
if self.init_scale == "auto":
scale = self._auto_scale(delta_x, delta_grad)
else:
scale = float(self.init_scale)
# Scale initial matrix with ``scale * np.eye(n)``
if self.approx_type == 'hess':
self.B *= scale
else:
self.H *= scale
self.first_iteration = False
self._update_implementation(delta_x, delta_grad)
def dot(self, p):
"""Compute the product of the internal matrix with the given vector.
Parameters
----------
p : array_like
1-d array representing a vector.
Returns
-------
Hp : array
1-d represents the result of multiplying the approximation matrix
by vector p.
"""
if self.approx_type == 'hess':
return self._symv(1, self.B, p)
else:
return self._symv(1, self.H, p)
def get_matrix(self):
"""Return the current internal matrix.
Returns
-------
M : ndarray, shape (n, n)
Dense matrix containing either the Hessian or its inverse
(depending on how `approx_type` was defined).
"""
if self.approx_type == 'hess':
M = np.copy(self.B)
else:
M = np.copy(self.H)
li = np.tril_indices_from(M, k=-1)
M[li] = M.T[li]
return M
class BFGS(FullHessianUpdateStrategy):
"""Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.
Parameters
----------
exception_strategy : {'skip_update', 'damp_update'}, optional
Define how to proceed when the curvature condition is violated.
Set it to 'skip_update' to just skip the update. Or, alternatively,
set it to 'damp_update' to interpolate between the actual BFGS
result and the unmodified matrix. Both exceptions strategies
are explained in [1]_, p.536-537.
min_curvature : float
This number, scaled by a normalization factor, defines the
minimum curvature ``dot(delta_grad, delta_x)`` allowed to go
unaffected by the exception strategy. By default is equal to
1e-8 when ``exception_strategy = 'skip_update'`` and equal
to 0.2 when ``exception_strategy = 'damp_update'``.
init_scale : {float, 'auto'}
Matrix scale at first iteration. At the first
iteration the Hessian matrix or its inverse will be initialized
with ``init_scale*np.eye(n)``, where ``n`` is the problem dimension.
Set it to 'auto' in order to use an automatic heuristic for choosing
the initial scale. The heuristic is described in [1]_, p.143.
By default uses 'auto'.
Notes
-----
The update is based on the description in [1]_, p.140.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
def __init__(self, exception_strategy='skip_update', min_curvature=None,
init_scale='auto'):
if exception_strategy == 'skip_update':
if min_curvature is not None:
self.min_curvature = min_curvature
else:
self.min_curvature = 1e-8
elif exception_strategy == 'damp_update':
if min_curvature is not None:
self.min_curvature = min_curvature
else:
self.min_curvature = 0.2
else:
raise ValueError("`exception_strategy` must be 'skip_update' "
"or 'damp_update'.")
super(BFGS, self).__init__(init_scale)
self.exception_strategy = exception_strategy
def _update_inverse_hessian(self, ys, Hy, yHy, s):
"""Update the inverse Hessian matrix.
BFGS update using the formula:
``H <- H + ((H*y).T*y + s.T*y)/(s.T*y)^2 * (s*s.T)
- 1/(s.T*y) * ((H*y)*s.T + s*(H*y).T)``
where ``s = delta_x`` and ``y = delta_grad``. This formula is
equivalent to (6.17) in [1]_ written in a more efficient way
for implementation.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
self.H = self._syr2(-1.0 / ys, s, Hy, a=self.H)
self.H = self._syr((ys+yHy)/ys**2, s, a=self.H)
def _update_hessian(self, ys, Bs, sBs, y):
"""Update the Hessian matrix.
BFGS update using the formula:
``B <- B - (B*s)*(B*s).T/s.T*(B*s) + y*y^T/s.T*y``
where ``s`` is short for ``delta_x`` and ``y`` is short
for ``delta_grad``. Formula (6.19) in [1]_.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
self.B = self._syr(1.0 / ys, y, a=self.B)
self.B = self._syr(-1.0 / sBs, Bs, a=self.B)
def _update_implementation(self, delta_x, delta_grad):
# Auxiliary variables w and z
if self.approx_type == 'hess':
w = delta_x
z = delta_grad
else:
w = delta_grad
z = delta_x
# Do some common operations
wz = np.dot(w, z)
Mw = self.dot(w)
wMw = Mw.dot(w)
# Guarantee that wMw > 0 by reinitializing matrix.
# While this is always true in exact arithmetics,
# indefinite matrix may appear due to roundoff errors.
if wMw <= 0.0:
scale = self._auto_scale(delta_x, delta_grad)
# Reinitialize matrix
if self.approx_type == 'hess':
self.B = scale * np.eye(self.n, dtype=float)
else:
self.H = scale * np.eye(self.n, dtype=float)
# Do common operations for new matrix
Mw = self.dot(w)
wMw = Mw.dot(w)
# Check if curvature condition is violated
if wz <= self.min_curvature * wMw:
# If the option 'skip_update' is set
# we just skip the update when the condion
# is violated.
if self.exception_strategy == 'skip_update':
return
# If the option 'damp_update' is set we
# interpolate between the actual BFGS
# result and the unmodified matrix.
elif self.exception_strategy == 'damp_update':
update_factor = (1-self.min_curvature) / (1 - wz/wMw)
z = update_factor*z + (1-update_factor)*Mw
wz = np.dot(w, z)
# Update matrix
if self.approx_type == 'hess':
self._update_hessian(wz, Mw, wMw, z)
else:
self._update_inverse_hessian(wz, Mw, wMw, z)
class SR1(FullHessianUpdateStrategy):
"""Symmetric-rank-1 Hessian update strategy.
Parameters
----------
min_denominator : float
This number, scaled by a normalization factor,
defines the minimum denominator magnitude allowed
in the update. When the condition is violated we skip
the update. By default uses ``1e-8``.
init_scale : {float, 'auto'}, optional
Matrix scale at first iteration. At the first
iteration the Hessian matrix or its inverse will be initialized
with ``init_scale*np.eye(n)``, where ``n`` is the problem dimension.
Set it to 'auto' in order to use an automatic heuristic for choosing
the initial scale. The heuristic is described in [1]_, p.143.
By default uses 'auto'.
Notes
-----
The update is based on the description in [1]_, p.144-146.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
def __init__(self, min_denominator=1e-8, init_scale='auto'):
self.min_denominator = min_denominator
super(SR1, self).__init__(init_scale)
def _update_implementation(self, delta_x, delta_grad):
# Auxiliary variables w and z
if self.approx_type == 'hess':
w = delta_x
z = delta_grad
else:
w = delta_grad
z = delta_x
# Do some common operations
Mw = self.dot(w)
z_minus_Mw = z - Mw
denominator = np.dot(w, z_minus_Mw)
# If the denominator is too small
# we just skip the update.
if np.abs(denominator) <= self.min_denominator*norm(w)*norm(z_minus_Mw):
return
# Update matrix
if self.approx_type == 'hess':
self.B = self._syr(1/denominator, z_minus_Mw, a=self.B)
else:
self.H = self._syr(1/denominator, z_minus_Mw, a=self.H)
|