1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
|
"""
An interior-point method for linear programming.
"""
# Author: Matt Haberland
from __future__ import print_function, division, absolute_import
import numpy as np
import scipy as sp
import scipy.sparse as sps
from warnings import warn
from scipy.linalg import LinAlgError
from .optimize import OptimizeResult, OptimizeWarning, _check_unknown_options
from scipy.optimize._remove_redundancy import _remove_redundancy
from scipy.optimize._remove_redundancy import _remove_redundancy_sparse
from scipy.optimize._remove_redundancy import _remove_redundancy_dense
def _clean_inputs(
c,
A_ub=None,
b_ub=None,
A_eq=None,
b_eq=None,
bounds=None):
"""
Given user inputs for a linear programming problem, return the
objective vector, upper bound constraints, equality constraints,
and simple bounds in a preferred format.
Parameters
----------
c : array_like
Coefficients of the linear objective function to be minimized.
A_ub : array_like, optional
2-D array which, when matrix-multiplied by ``x``, gives the values of
the upper-bound inequality constraints at ``x``.
b_ub : array_like, optional
1-D array of values representing the upper-bound of each inequality
constraint (row) in ``A_ub``.
A_eq : array_like, optional
2-D array which, when matrix-multiplied by ``x``, gives the values of
the equality constraints at ``x``.
b_eq : array_like, optional
1-D array of values representing the RHS of each equality constraint
(row) in ``A_eq``.
bounds : sequence, optional
``(min, max)`` pairs for each element in ``x``, defining
the bounds on that parameter. Use None for one of ``min`` or
``max`` when there is no bound in that direction. By default
bounds are ``(0, None)`` (non-negative)
If a sequence containing a single tuple is provided, then ``min`` and
``max`` will be applied to all variables in the problem.
Returns
-------
c : 1-D array
Coefficients of the linear objective function to be minimized.
A_ub : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the upper-bound inequality constraints at ``x``.
b_ub : 1-D array
1-D array of values representing the upper-bound of each inequality
constraint (row) in ``A_ub``.
A_eq : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the equality constraints at ``x``.
b_eq : 1-D array
1-D array of values representing the RHS of each equality constraint
(row) in ``A_eq``.
bounds : sequence of tuples
``(min, max)`` pairs for each element in ``x``, defining
the bounds on that parameter. Use None for each of ``min`` or
``max`` when there is no bound in that direction. By default
bounds are ``(0, None)`` (non-negative)
"""
try:
if c is None:
raise TypeError
try:
c = np.asarray(c, dtype=float).copy().squeeze()
except BaseException: # typically a ValueError and shouldn't be, IMO
raise TypeError
if c.size == 1:
c = c.reshape((-1))
n_x = len(c)
if n_x == 0 or len(c.shape) != 1:
raise ValueError(
"Invalid input for linprog: c should be a 1D array; it must "
"not have more than one non-singleton dimension")
if not(np.isfinite(c).all()):
raise ValueError(
"Invalid input for linprog: c must not contain values "
"inf, nan, or None")
except TypeError:
raise TypeError(
"Invalid input for linprog: c must be a 1D array of numerical "
"coefficients")
try:
try:
if sps.issparse(A_eq) or sps.issparse(A_ub):
A_ub = sps.coo_matrix(
(0, n_x), dtype=float) if A_ub is None else sps.coo_matrix(
A_ub, dtype=float).copy()
else:
A_ub = np.zeros(
(0, n_x), dtype=float) if A_ub is None else np.asarray(
A_ub, dtype=float).copy()
except BaseException:
raise TypeError
n_ub = A_ub.shape[0]
if len(A_ub.shape) != 2 or A_ub.shape[1] != len(c):
raise ValueError(
"Invalid input for linprog: A_ub must have exactly two "
"dimensions, and the number of columns in A_ub must be "
"equal to the size of c ")
if (sps.issparse(A_ub) and not np.isfinite(A_ub.data).all()
or not sps.issparse(A_ub) and not np.isfinite(A_ub).all()):
raise ValueError(
"Invalid input for linprog: A_ub must not contain values "
"inf, nan, or None")
except TypeError:
raise TypeError(
"Invalid input for linprog: A_ub must be a numerical 2D array "
"with each row representing an upper bound inequality constraint")
try:
try:
b_ub = np.array(
[], dtype=float) if b_ub is None else np.asarray(
b_ub, dtype=float).copy().squeeze()
except BaseException:
raise TypeError
if b_ub.size == 1:
b_ub = b_ub.reshape((-1))
if len(b_ub.shape) != 1:
raise ValueError(
"Invalid input for linprog: b_ub should be a 1D array; it "
"must not have more than one non-singleton dimension")
if len(b_ub) != n_ub:
raise ValueError(
"Invalid input for linprog: The number of rows in A_ub must "
"be equal to the number of values in b_ub")
if not(np.isfinite(b_ub).all()):
raise ValueError(
"Invalid input for linprog: b_ub must not contain values "
"inf, nan, or None")
except TypeError:
raise TypeError(
"Invalid input for linprog: b_ub must be a 1D array of "
"numerical values, each representing the upper bound of an "
"inequality constraint (row) in A_ub")
try:
try:
if sps.issparse(A_eq) or sps.issparse(A_ub):
A_eq = sps.coo_matrix(
(0, n_x), dtype=float) if A_eq is None else sps.coo_matrix(
A_eq, dtype=float).copy()
else:
A_eq = np.zeros(
(0, n_x), dtype=float) if A_eq is None else np.asarray(
A_eq, dtype=float).copy()
except BaseException:
raise TypeError
n_eq = A_eq.shape[0]
if len(A_eq.shape) != 2 or A_eq.shape[1] != len(c):
raise ValueError(
"Invalid input for linprog: A_eq must have exactly two "
"dimensions, and the number of columns in A_eq must be "
"equal to the size of c ")
if (sps.issparse(A_eq) and not np.isfinite(A_eq.data).all()
or not sps.issparse(A_eq) and not np.isfinite(A_eq).all()):
raise ValueError(
"Invalid input for linprog: A_eq must not contain values "
"inf, nan, or None")
except TypeError:
raise TypeError(
"Invalid input for linprog: A_eq must be a 2D array with each "
"row representing an equality constraint")
try:
try:
b_eq = np.array(
[], dtype=float) if b_eq is None else np.asarray(
b_eq, dtype=float).copy().squeeze()
except BaseException:
raise TypeError
if b_eq.size == 1:
b_eq = b_eq.reshape((-1))
if len(b_eq.shape) != 1:
raise ValueError(
"Invalid input for linprog: b_eq should be a 1D array; it "
"must not have more than one non-singleton dimension")
if len(b_eq) != n_eq:
raise ValueError(
"Invalid input for linprog: the number of rows in A_eq "
"must be equal to the number of values in b_eq")
if not(np.isfinite(b_eq).all()):
raise ValueError(
"Invalid input for linprog: b_eq must not contain values "
"inf, nan, or None")
except TypeError:
raise TypeError(
"Invalid input for linprog: b_eq must be a 1D array of "
"numerical values, each representing the right hand side of an "
"equality constraints (row) in A_eq")
# "If a sequence containing a single tuple is provided, then min and max
# will be applied to all variables in the problem."
# linprog doesn't treat this right: it didn't accept a list with one tuple
# in it
try:
if isinstance(bounds, str):
raise TypeError
if bounds is None or len(bounds) == 0:
bounds = [(0, None)] * n_x
elif len(bounds) == 1:
b = bounds[0]
if len(b) != 2:
raise ValueError(
"Invalid input for linprog: exactly one lower bound and "
"one upper bound must be specified for each element of x")
bounds = [b] * n_x
elif len(bounds) == n_x:
try:
len(bounds[0])
except BaseException:
bounds = [(bounds[0], bounds[1])] * n_x
for i, b in enumerate(bounds):
if len(b) != 2:
raise ValueError(
"Invalid input for linprog, bound " +
str(i) +
" " +
str(b) +
": exactly one lower bound and one upper bound must "
"be specified for each element of x")
elif (len(bounds) == 2 and np.isreal(bounds[0])
and np.isreal(bounds[1])):
bounds = [(bounds[0], bounds[1])] * n_x
else:
raise ValueError(
"Invalid input for linprog: exactly one lower bound and one "
"upper bound must be specified for each element of x")
clean_bounds = [] # also creates a copy so user's object isn't changed
for i, b in enumerate(bounds):
if b[0] is not None and b[1] is not None and b[0] > b[1]:
raise ValueError(
"Invalid input for linprog, bound " +
str(i) +
" " +
str(b) +
": a lower bound must be less than or equal to the "
"corresponding upper bound")
if b[0] == np.inf:
raise ValueError(
"Invalid input for linprog, bound " +
str(i) +
" " +
str(b) +
": infinity is not a valid lower bound")
if b[1] == -np.inf:
raise ValueError(
"Invalid input for linprog, bound " +
str(i) +
" " +
str(b) +
": negative infinity is not a valid upper bound")
lb = float(b[0]) if b[0] is not None and b[0] != -np.inf else None
ub = float(b[1]) if b[1] is not None and b[1] != np.inf else None
clean_bounds.append((lb, ub))
bounds = clean_bounds
except ValueError as e:
if "could not convert string to float" in e.args[0]:
raise TypeError
else:
raise e
except TypeError as e:
print(e)
raise TypeError(
"Invalid input for linprog: bounds must be a sequence of "
"(min,max) pairs, each defining bounds on an element of x ")
return c, A_ub, b_ub, A_eq, b_eq, bounds
def _presolve(c, A_ub, b_ub, A_eq, b_eq, bounds, rr):
"""
Given inputs for a linear programming problem in preferred format,
presolve the problem: identify trivial infeasibilities, redundancies,
and unboundedness, tighten bounds where possible, and eliminate fixed
variables.
Parameters
----------
c : 1-D array
Coefficients of the linear objective function to be minimized.
A_ub : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the upper-bound inequality constraints at ``x``.
b_ub : 1-D array
1-D array of values representing the upper-bound of each inequality
constraint (row) in ``A_ub``.
A_eq : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the equality constraints at ``x``.
b_eq : 1-D array
1-D array of values representing the RHS of each equality constraint
(row) in ``A_eq``.
bounds : sequence of tuples
``(min, max)`` pairs for each element in ``x``, defining
the bounds on that parameter. Use None for each of ``min`` or
``max`` when there is no bound in that direction.
Returns
-------
c : 1-D array
Coefficients of the linear objective function to be minimized.
c0 : 1-D array
Constant term in objective function due to fixed (and eliminated)
variables.
A_ub : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the upper-bound inequality constraints at ``x``. Unnecessary
rows/columns have been removed.
b_ub : 1-D array
1-D array of values representing the upper-bound of each inequality
constraint (row) in ``A_ub``. Unnecessary elements have been removed.
A_eq : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the equality constraints at ``x``. Unnecessary rows/columns have been
removed.
b_eq : 1-D array
1-D array of values representing the RHS of each equality constraint
(row) in ``A_eq``. Unnecessary elements have been removed.
bounds : sequence of tuples
``(min, max)`` pairs for each element in ``x``, defining
the bounds on that parameter. Use None for each of ``min`` or
``max`` when there is no bound in that direction. Bounds have been
tightened where possible.
x : 1-D array
Solution vector (when the solution is trivial and can be determined
in presolve)
undo: list of tuples
(index, value) pairs that record the original index and fixed value
for each variable removed from the problem
complete: bool
Whether the solution is complete (solved or determined to be infeasible
or unbounded in presolve)
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
message : str
A string descriptor of the exit status of the optimization.
References
----------
.. [2] Andersen, Erling D. "Finding all linearly dependent rows in
large-scale linear programming." Optimization Methods and Software
6.3 (1995): 219-227.
.. [5] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
programming." Mathematical Programming 71.2 (1995): 221-245.
"""
# ideas from Reference [5] by Andersen and Andersen
# however, unlike the reference, this is performed before converting
# problem to standard form
# There are a few advantages:
# * artificial variables have not been added, so matrices are smaller
# * bounds have not been converted to constraints yet. (It is better to
# do that after presolve because presolve may adjust the simple bounds.)
# There are many improvements that can be made, namely:
# * implement remaining checks from [5]
# * loop presolve until no additional changes are made
# * implement additional efficiency improvements in redundancy removal [2]
tol = 1e-9 # tolerance for equality. should this be exposed to user?
undo = [] # record of variables eliminated from problem
# constant term in cost function may be added if variables are eliminated
c0 = 0
complete = False # complete is True if detected infeasible/unbounded
x = np.zeros(c.shape) # this is solution vector if completed in presolve
status = 0 # all OK unless determined otherwise
message = ""
# Standard form for bounds (from _clean_inputs) is list of tuples
# but numpy array is more convenient here
# In retrospect, numpy array should have been the standard
bounds = np.array(bounds)
lb = bounds[:, 0]
ub = bounds[:, 1]
lb[np.equal(lb, None)] = -np.inf
ub[np.equal(ub, None)] = np.inf
bounds = bounds.astype(float)
lb = lb.astype(float)
ub = ub.astype(float)
m_eq, n = A_eq.shape
m_ub, n = A_ub.shape
if (sps.issparse(A_eq)):
A_eq = A_eq.tolil()
A_ub = A_ub.tolil()
def where(A):
return A.nonzero()
vstack = sps.vstack
else:
where = np.where
vstack = np.vstack
# zero row in equality constraints
zero_row = np.array(np.sum(A_eq != 0, axis=1) == 0).flatten()
if np.any(zero_row):
if np.any(
np.logical_and(
zero_row,
np.abs(b_eq) > tol)): # test_zero_row_1
# infeasible if RHS is not zero
status = 2
message = ("The problem is (trivially) infeasible due to a row "
"of zeros in the equality constraint matrix with a "
"nonzero corresponding constraint value.")
complete = True
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
else: # test_zero_row_2
# if RHS is zero, we can eliminate this equation entirely
A_eq = A_eq[np.logical_not(zero_row), :]
b_eq = b_eq[np.logical_not(zero_row)]
# zero row in inequality constraints
zero_row = np.array(np.sum(A_ub != 0, axis=1) == 0).flatten()
if np.any(zero_row):
if np.any(np.logical_and(zero_row, b_ub < -tol)): # test_zero_row_1
# infeasible if RHS is less than zero (because LHS is zero)
status = 2
message = ("The problem is (trivially) infeasible due to a row "
"of zeros in the equality constraint matrix with a "
"nonzero corresponding constraint value.")
complete = True
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
else: # test_zero_row_2
# if LHS is >= 0, we can eliminate this constraint entirely
A_ub = A_ub[np.logical_not(zero_row), :]
b_ub = b_ub[np.logical_not(zero_row)]
# zero column in (both) constraints
# this indicates that a variable isn't constrained and can be removed
A = vstack((A_eq, A_ub))
if A.shape[0] > 0:
zero_col = np.array(np.sum(A != 0, axis=0) == 0).flatten()
# variable will be at upper or lower bound, depending on objective
x[np.logical_and(zero_col, c < 0)] = ub[
np.logical_and(zero_col, c < 0)]
x[np.logical_and(zero_col, c > 0)] = lb[
np.logical_and(zero_col, c > 0)]
if np.any(np.isinf(x)): # if an unconstrained variable has no bound
status = 3
message = ("If feasible, the problem is (trivially) unbounded "
"due to a zero column in the constraint matrices. If "
"you wish to check whether the problem is infeasible, "
"turn presolve off.")
complete = True
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
# variables will equal upper/lower bounds will be removed later
lb[np.logical_and(zero_col, c < 0)] = ub[
np.logical_and(zero_col, c < 0)]
ub[np.logical_and(zero_col, c > 0)] = lb[
np.logical_and(zero_col, c > 0)]
# row singleton in equality constraints
# this fixes a variable and removes the constraint
singleton_row = np.array(np.sum(A_eq != 0, axis=1) == 1).flatten()
rows = where(singleton_row)[0]
cols = where(A_eq[rows, :])[1]
if len(rows) > 0:
for row, col in zip(rows, cols):
val = b_eq[row] / A_eq[row, col]
if not lb[col] - tol <= val <= ub[col] + tol:
# infeasible if fixed value is not within bounds
status = 2
message = ("The problem is (trivially) infeasible because a "
"singleton row in the equality constraints is "
"inconsistent with the bounds.")
complete = True
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
else:
# sets upper and lower bounds at that fixed value - variable
# will be removed later
lb[col] = val
ub[col] = val
A_eq = A_eq[np.logical_not(singleton_row), :]
b_eq = b_eq[np.logical_not(singleton_row)]
# row singleton in inequality constraints
# this indicates a simple bound and the constraint can be removed
# simple bounds may be adjusted here
# After all of the simple bound information is combined here, get_Abc will
# turn the simple bounds into constraints
singleton_row = np.array(np.sum(A_ub != 0, axis=1) == 1).flatten()
cols = where(A_ub[singleton_row, :])[1]
rows = where(singleton_row)[0]
if len(rows) > 0:
for row, col in zip(rows, cols):
val = b_ub[row] / A_ub[row, col]
if A_ub[row, col] > 0: # upper bound
if val < lb[col] - tol: # infeasible
complete = True
elif val < ub[col]: # new upper bound
ub[col] = val
else: # lower bound
if val > ub[col] + tol: # infeasible
complete = True
elif val > lb[col]: # new lower bound
lb[col] = val
if complete:
status = 2
message = ("The problem is (trivially) infeasible because a "
"singleton row in the upper bound constraints is "
"inconsistent with the bounds.")
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
A_ub = A_ub[np.logical_not(singleton_row), :]
b_ub = b_ub[np.logical_not(singleton_row)]
# identical bounds indicate that variable can be removed
i_f = np.abs(lb - ub) < tol # indices of "fixed" variables
i_nf = np.logical_not(i_f) # indices of "not fixed" variables
# test_bounds_equal_but_infeasible
if np.all(i_f): # if bounds define solution, check for consistency
residual = b_eq - A_eq.dot(lb)
slack = b_ub - A_ub.dot(lb)
if ((A_ub.size > 0 and np.any(slack < 0)) or
(A_eq.size > 0 and not np.allclose(residual, 0))):
status = 2
message = ("The problem is (trivially) infeasible because the "
"bounds fix all variables to values inconsistent with "
"the constraints")
complete = True
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
ub_mod = ub
lb_mod = lb
if np.any(i_f):
c0 += c[i_f].dot(lb[i_f])
b_eq = b_eq - A_eq[:, i_f].dot(lb[i_f])
b_ub = b_ub - A_ub[:, i_f].dot(lb[i_f])
c = c[i_nf]
x = x[i_nf]
A_eq = A_eq[:, i_nf]
A_ub = A_ub[:, i_nf]
# record of variables to be added back in
undo = [np.where(i_f)[0], lb[i_f]]
# don't remove these entries from bounds; they'll be used later.
# but we _also_ need a version of the bounds with these removed
lb_mod = lb[i_nf]
ub_mod = ub[i_nf]
# no constraints indicates that problem is trivial
if A_eq.size == 0 and A_ub.size == 0:
b_eq = np.array([])
b_ub = np.array([])
# test_empty_constraint_1
if c.size == 0:
status = 0
message = ("The solution was determined in presolve as there are "
"no non-trivial constraints.")
elif (np.any(np.logical_and(c < 0, ub == np.inf)) or
np.any(np.logical_and(c > 0, lb == -np.inf))):
# test_no_constraints()
status = 3
message = ("If feasible, the problem is (trivially) unbounded "
"because there are no constraints and at least one "
"element of c is negative. If you wish to check "
"whether the problem is infeasible, turn presolve "
"off.")
else: # test_empty_constraint_2
status = 0
message = ("The solution was determined in presolve as there are "
"no non-trivial constraints.")
complete = True
x[c < 0] = ub_mod[c < 0]
x[c > 0] = lb_mod[c > 0]
# if this is not the last step of presolve, should convert bounds back
# to array and return here
# *sigh* - convert bounds back to their standard form (list of tuples)
# again, in retrospect, numpy array would be standard form
lb[np.equal(lb, -np.inf)] = None
ub[np.equal(ub, np.inf)] = None
bounds = np.hstack((lb[:, np.newaxis], ub[:, np.newaxis]))
bounds = bounds.tolist()
for i, row in enumerate(bounds):
for j, col in enumerate(row):
if str(
col) == "nan": # comparing col to float("nan") and
# np.nan doesn't work. should use np.isnan
bounds[i][j] = None
# remove redundant (linearly dependent) rows from equality constraints
n_rows_A = A_eq.shape[0]
redundancy_warning = ("A_eq does not appear to be of full row rank. To "
"improve performance, check the problem formulation "
"for redundant equality constraints.")
if (sps.issparse(A_eq)):
if rr and A_eq.size > 0: # TODO: Fast sparse rank check?
A_eq, b_eq, status, message = _remove_redundancy_sparse(A_eq, b_eq)
if A_eq.shape[0] < n_rows_A:
warn(redundancy_warning, OptimizeWarning)
if status != 0:
complete = True
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
# This is a wild guess for which redundancy removal algorithm will be
# faster. More testing would be good.
small_nullspace = 5
if rr and A_eq.size > 0:
try: # TODO: instead use results of first SVD in _remove_redundancy
rank = np.linalg.matrix_rank(A_eq)
except: # oh well, we'll have to go with _remove_redundancy_dense
rank = 0
if rr and A_eq.size > 0 and rank < A_eq.shape[0]:
warn(redundancy_warning, OptimizeWarning)
dim_row_nullspace = A_eq.shape[0]-rank
if dim_row_nullspace <= small_nullspace:
A_eq, b_eq, status, message = _remove_redundancy(A_eq, b_eq)
if dim_row_nullspace > small_nullspace or status == 4:
A_eq, b_eq, status, message = _remove_redundancy_dense(A_eq, b_eq)
if A_eq.shape[0] < rank:
message = ("Due to numerical issues, redundant equality "
"constraints could not be removed automatically. "
"Try providing your constraint matrices as sparse "
"matrices to activate sparse presolve, try turning "
"off redundancy removal, or try turning off presolve "
"altogether.")
status = 4
if status != 0:
complete = True
return (c, c0, A_ub, b_ub, A_eq, b_eq, bounds,
x, undo, complete, status, message)
def _get_Abc(
c,
c0=0,
A_ub=None,
b_ub=None,
A_eq=None,
b_eq=None,
bounds=None,
undo=[]):
"""
Given a linear programming problem of the form:
minimize: c^T * x
subject to: A_ub * x <= b_ub
A_eq * x == b_eq
bounds[i][0] < x_i < bounds[i][1]
return the problem in standard form:
minimize: c'^T * x'
subject to: A * x' == b
0 < x' < oo
by adding slack variables and making variable substitutions as necessary.
Parameters
----------
c : 1-D array
Coefficients of the linear objective function to be minimized.
Components corresponding with fixed variables have been eliminated.
c0 : float
Constant term in objective function due to fixed (and eliminated)
variables.
A_ub : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the upper-bound inequality constraints at ``x``. Unnecessary
rows/columns have been removed.
b_ub : 1-D array
1-D array of values representing the upper-bound of each inequality
constraint (row) in ``A_ub``. Unnecessary elements have been removed.
A_eq : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the equality constraints at ``x``. Unnecessary rows/columns have been
removed.
b_eq : 1-D array
1-D array of values representing the RHS of each equality constraint
(row) in ``A_eq``. Unnecessary elements have been removed.
bounds : sequence of tuples
``(min, max)`` pairs for each element in ``x``, defining
the bounds on that parameter. Use None for each of ``min`` or
``max`` when there is no bound in that direction. Bounds have been
tightened where possible.
undo: list of tuples
(`index`, `value`) pairs that record the original index and fixed value
for each variable removed from the problem
Returns
-------
A : 2-D array
2-D array which, when matrix-multiplied by x, gives the values of the
equality constraints at x (for standard form problem).
b : 1-D array
1-D array of values representing the RHS of each equality constraint
(row) in A (for standard form problem).
c : 1-D array
Coefficients of the linear objective function to be minimized (for
standard form problem).
c0 : float
Constant term in objective function due to fixed (and eliminated)
variables.
References
----------
.. [6] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
programming." Athena Scientific 1 (1997): 997.
"""
if sps.issparse(A_eq):
sparse = True
A_eq = sps.lil_matrix(A_eq)
A_ub = sps.lil_matrix(A_ub)
def hstack(blocks):
return sps.hstack(blocks, format="lil")
def vstack(blocks):
return sps.vstack(blocks, format="lil")
zeros = sps.lil_matrix
eye = sps.eye
else:
sparse = False
hstack = np.hstack
vstack = np.vstack
zeros = np.zeros
eye = np.eye
fixed_x = set()
if len(undo) > 0:
# these are indices of variables removed from the problem
# however, their bounds are still part of the bounds list
fixed_x = set(undo[0])
# they are needed elsewhere, but not here
bounds = [bounds[i] for i in range(len(bounds)) if i not in fixed_x]
# in retrospect, the standard form of bounds should have been an n x 2
# array. maybe change it someday.
# modify problem such that all variables have only non-negativity bounds
bounds = np.array(bounds)
lbs = bounds[:, 0]
ubs = bounds[:, 1]
m_ub, n_ub = A_ub.shape
lb_none = np.equal(lbs, None)
ub_none = np.equal(ubs, None)
lb_some = np.logical_not(lb_none)
ub_some = np.logical_not(ub_none)
# if preprocessing is on, lb == ub can't happen
# if preprocessing is off, then it would be best to convert that
# to an equality constraint, but it's tricky to make the other
# required modifications from inside here.
# unbounded below: substitute xi = -xi' (unbounded above)
l_nolb_someub = np.logical_and(lb_none, ub_some)
i_nolb = np.where(l_nolb_someub)[0]
lbs[l_nolb_someub], ubs[l_nolb_someub] = (
-ubs[l_nolb_someub], lbs[l_nolb_someub])
lb_none = np.equal(lbs, None)
ub_none = np.equal(ubs, None)
lb_some = np.logical_not(lb_none)
ub_some = np.logical_not(ub_none)
c[i_nolb] *= -1
if len(i_nolb) > 0:
if A_ub.shape[0] > 0: # sometimes needed for sparse arrays... weird
A_ub[:, i_nolb] *= -1
if A_eq.shape[0] > 0:
A_eq[:, i_nolb] *= -1
# upper bound: add inequality constraint
i_newub = np.where(ub_some)[0]
ub_newub = ubs[ub_some]
n_bounds = np.count_nonzero(ub_some)
A_ub = vstack((A_ub, zeros((n_bounds, A_ub.shape[1]))))
b_ub = np.concatenate((b_ub, np.zeros(n_bounds)))
A_ub[range(m_ub, A_ub.shape[0]), i_newub] = 1
b_ub[m_ub:] = ub_newub
A1 = vstack((A_ub, A_eq))
b = np.concatenate((b_ub, b_eq))
c = np.concatenate((c, np.zeros((A_ub.shape[0],))))
# unbounded: substitute xi = xi+ + xi-
l_free = np.logical_and(lb_none, ub_none)
i_free = np.where(l_free)[0]
n_free = len(i_free)
A1 = hstack((A1, zeros((A1.shape[0], n_free))))
c = np.concatenate((c, np.zeros(n_free)))
A1[:, range(n_ub, A1.shape[1])] = -A1[:, i_free]
c[np.arange(n_ub, A1.shape[1])] = -c[i_free]
# add slack variables
A2 = vstack([eye(A_ub.shape[0]), zeros((A_eq.shape[0], A_ub.shape[0]))])
A = hstack([A1, A2])
# lower bound: substitute xi = xi' + lb
# now there is a constant term in objective
i_shift = np.where(lb_some)[0]
lb_shift = lbs[lb_some].astype(float)
c0 += np.sum(lb_shift * c[i_shift])
if sparse:
b = b.reshape(-1, 1)
A = A.tocsc()
b -= (A[:, i_shift] * sps.diags(lb_shift)).sum(axis=1)
b = b.ravel()
else:
b -= (A[:, i_shift] * lb_shift).sum(axis=1)
return A, b, c, c0
def _postprocess(
x,
c,
A_ub=None,
b_ub=None,
A_eq=None,
b_eq=None,
bounds=None,
complete=False,
undo=[],
status=0,
message="",
tol=1e-8):
"""
Given solution x to presolved, standard form linear program x, add
fixed variables back into the problem and undo the variable substitutions
to get solution to original linear program. Also, calculate the objective
function value, slack in original upper bound constraints, and residuals
in original equality constraints.
Parameters
----------
x : 1-D array
Solution vector to the standard-form problem.
c : 1-D array
Original coefficients of the linear objective function to be minimized.
A_ub : 2-D array
Original upper bound constraint matrix.
b_ub : 1-D array
Original upper bound constraint vector.
A_eq : 2-D array
Original equality constraint matrix.
b_eq : 1-D array
Original equality constraint vector.
bounds : sequence of tuples
Bounds, as modified in presolve
complete : bool
Whether the solution is was determined in presolve (``True`` if so)
undo: list of tuples
(`index`, `value`) pairs that record the original index and fixed value
for each variable removed from the problem
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
message : str
A string descriptor of the exit status of the optimization.
tol : float
Termination tolerance; see [1]_ Section 4.5.
Returns
-------
x : 1-D array
Solution vector to original linear programming problem
fun: float
optimal objective value for original problem
slack: 1-D array
The (non-negative) slack in the upper bound constraints, that is,
``b_ub - A_ub * x``
con : 1-D array
The (nominally zero) residuals of the equality constraints, that is,
``b - A_eq * x``
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
message : str
A string descriptor of the exit status of the optimization.
"""
# note that all the inputs are the ORIGINAL, unmodified versions
# no rows, columns have been removed
# the only exception is bounds; it has been modified
# we need these modified values to undo the variable substitutions
# in retrospect, perhaps this could have been simplified if the "undo"
# variable also contained information for undoing variable substitutions
n_x = len(c)
# we don't have to undo variable substitutions for fixed variables that
# were removed from the problem
no_adjust = set()
# if there were variables removed from the problem, add them back into the
# solution vector
if len(undo) > 0:
no_adjust = set(undo[0])
x = x.tolist()
for i, val in zip(undo[0], undo[1]):
x.insert(i, val)
x = np.array(x)
# now undo variable substitutions
# if "complete", problem was solved in presolve; don't do anything here
if not complete and bounds is not None: # bounds are never none, probably
n_unbounded = 0
for i, b in enumerate(bounds):
if i in no_adjust:
continue
lb, ub = b
if lb is None and ub is None:
n_unbounded += 1
x[i] = x[i] - x[n_x + n_unbounded - 1]
else:
if lb is None:
x[i] = ub - x[i]
else:
x[i] += lb
n_x = len(c)
x = x[:n_x] # all the rest of the variables were artificial
fun = x.dot(c)
slack = b_ub - A_ub.dot(x) # report slack for ORIGINAL UB constraints
# report residuals of ORIGINAL EQ constraints
con = b_eq - A_eq.dot(x)
# Patch for bug #8664. Detecting this sort of issue earlier
# (via abnormalities in the indicators) would be better.
bounds = np.array(bounds) # again, this should have been the standard form
lb = bounds[:, 0]
ub = bounds[:, 1]
lb[np.equal(lb, None)] = -np.inf
ub[np.equal(ub, None)] = np.inf
tol = np.sqrt(tol) # Somewhat arbitrary, but status 5 is very unusual
if status == 0 and ((slack < -tol).any() or (np.abs(con) > tol).any() or
(x < lb - tol).any() or (x > ub + tol).any()):
status = 4
message = ("The solution does not satisfy the constraints, yet "
"no errors were raised and there is no certificate of "
"infeasibility or unboundedness. This is known to occur "
"if the `presolve` option is False and the problem is "
"infeasible. If you uncounter this under different "
"circumstances, please submit a bug report. Otherwise, "
"please enable presolve.")
elif status == 0 and (np.isnan(x).any() or np.isnan(fun) or
np.isnan(slack).any() or np.isnan(con).any()):
status = 4
message = ("Numerical difficulties were encountered but no errors "
"were raised. This is known to occur if the 'presolve' "
"option is False, 'sparse' is True, and A_eq includes "
"redundant rows. If you encounter this under different "
"circumstances, please submit a bug report. Otherwise, "
"remove linearly dependent equations from your equality "
"constraints or enable presolve.")
return x, fun, slack, con, status, message
def _get_solver(sparse=False, lstsq=False, sym_pos=True, cholesky=True):
"""
Given solver options, return a handle to the appropriate linear system
solver.
Parameters
----------
sparse : bool
True if the system to be solved is sparse. This is typically set
True when the original ``A_ub`` and ``A_eq`` arrays are sparse.
lstsq : bool
True if the system is ill-conditioned and/or (nearly) singular and
thus a more robust least-squares solver is desired. This is sometimes
needed as the solution is approached.
sym_pos : bool
True if the system matrix is symmetric positive definite
Sometimes this needs to be set false as the solution is approached,
even when the system should be symmetric positive definite, due to
numerical difficulties.
cholesky : bool
True if the system is to be solved by Cholesky, rather than LU,
decomposition. This is typically faster unless the problem is very
small or prone to numerical difficulties.
Returns
-------
solve : function
Handle to the appropriate solver function
"""
if sparse:
if lstsq or not(sym_pos):
def solve(M, r, sym_pos=False):
return sps.linalg.lsqr(M, r)[0]
else:
# this is not currently used; it is replaced by splu solve
# TODO: expose use of this as an option
def solve(M, r):
return sps.linalg.spsolve(M, r, permc_spec="MMD_AT_PLUS_A")
else:
if lstsq: # sometimes necessary as solution is approached
def solve(M, r):
return sp.linalg.lstsq(M, r)[0]
elif cholesky:
solve = sp.linalg.cho_solve
else:
# this seems to cache the matrix factorization, so solving
# with multiple right hand sides is much faster
def solve(M, r, sym_pos=sym_pos):
return sp.linalg.solve(M, r, sym_pos=sym_pos)
return solve
def _get_delta(
A,
b,
c,
x,
y,
z,
tau,
kappa,
gamma,
eta,
sparse=False,
lstsq=False,
sym_pos=True,
cholesky=True,
pc=True,
ip=False,
permc_spec='MMD_AT_PLUS_A'):
"""
Given standard form problem defined by ``A``, ``b``, and ``c``;
current variable estimates ``x``, ``y``, ``z``, ``tau``, and ``kappa``;
algorithmic parameters ``gamma and ``eta;
and options ``sparse``, ``lstsq``, ``sym_pos``, ``cholesky``, ``pc``
(predictor-corrector), and ``ip`` (initial point improvement),
get the search direction for increments to the variable estimates.
Parameters
----------
As defined in [1], except:
sparse : bool
True if the system to be solved is sparse. This is typically set
True when the original ``A_ub`` and ``A_eq`` arrays are sparse.
lstsq : bool
True if the system is ill-conditioned and/or (nearly) singular and
thus a more robust least-squares solver is desired. This is sometimes
needed as the solution is approached.
sym_pos : bool
True if the system matrix is symmetric positive definite
Sometimes this needs to be set false as the solution is approached,
even when the system should be symmetric positive definite, due to
numerical difficulties.
cholesky : bool
True if the system is to be solved by Cholesky, rather than LU,
decomposition. This is typically faster unless the problem is very
small or prone to numerical difficulties.
pc : bool
True if the predictor-corrector method of Mehrota is to be used. This
is almost always (if not always) beneficial. Even though it requires
the solution of an additional linear system, the factorization
is typically (implicitly) reused so solution is efficient, and the
number of algorithm iterations is typically reduced.
ip : bool
True if the improved initial point suggestion due to [1] section 4.3
is desired. It's unclear whether this is beneficial.
permc_spec : str (default = 'MMD_AT_PLUS_A')
(Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
True``.) A matrix is factorized in each iteration of the algorithm.
This option specifies how to permute the columns of the matrix for
sparsity preservation. Acceptable values are:
- ``NATURAL``: natural ordering.
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
- ``COLAMD``: approximate minimum degree column ordering.
This option can impact the convergence of the
interior point algorithm; test different values to determine which
performs best for your problem. For more information, refer to
``scipy.sparse.linalg.splu``.
Returns
-------
Search directions as defined in [1]
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
"""
if A.shape[0] == 0:
# If there are no constraints, some solvers fail (understandably)
# rather than returning empty solution. This gets the job done.
sparse, lstsq, sym_pos, cholesky = False, False, True, False
solve = _get_solver(sparse, lstsq, sym_pos, cholesky)
n_x = len(x)
# [1] Equation 8.8
r_P = b * tau - A.dot(x)
r_D = c * tau - A.T.dot(y) - z
r_G = c.dot(x) - b.transpose().dot(y) + kappa
mu = (x.dot(z) + tau * kappa) / (n_x + 1)
# Assemble M from [1] Equation 8.31
Dinv = x / z
splu = False
if sparse and not lstsq:
# sparse requires Dinv to be diag matrix
M = A.dot(sps.diags(Dinv, 0, format="csc").dot(A.T))
try:
# TODO: should use linalg.factorized instead, but I don't have
# umfpack and therefore cannot test its performance
solve = sps.linalg.splu(M, permc_spec=permc_spec).solve
splu = True
except:
lstsq = True
solve = _get_solver(sparse, lstsq, sym_pos, cholesky)
else:
# dense does not; use broadcasting
M = A.dot(Dinv.reshape(-1, 1) * A.T)
# For some small problems, calling sp.linalg.solve w/ sym_pos = True
# may be faster. I am pretty certain it caches the factorization for
# multiple uses and checks the incoming matrix to see if it's the same as
# the one it already factorized. (I can't explain the speed otherwise.)
if cholesky:
try:
L = sp.linalg.cho_factor(M)
except:
cholesky = False
solve = _get_solver(sparse, lstsq, sym_pos, cholesky)
# pc: "predictor-corrector" [1] Section 4.1
# In development this option could be turned off
# but it always seems to improve performance substantially
n_corrections = 1 if pc else 0
i = 0
alpha, d_x, d_z, d_tau, d_kappa = 0, 0, 0, 0, 0
while i <= n_corrections:
# Reference [1] Eq. 8.6
rhatp = eta(gamma) * r_P
rhatd = eta(gamma) * r_D
rhatg = np.array(eta(gamma) * r_G).reshape((1,))
# Reference [1] Eq. 8.7
rhatxs = gamma * mu - x * z
rhattk = np.array(gamma * mu - tau * kappa).reshape((1,))
if i == 1:
if ip: # if the correction is to get "initial point"
# Reference [1] Eq. 8.23
rhatxs = ((1 - alpha) * gamma * mu -
x * z - alpha**2 * d_x * d_z)
rhattk = np.array(
(1 -
alpha) *
gamma *
mu -
tau *
kappa -
alpha**2 *
d_tau *
d_kappa).reshape(
(1,
))
else: # if the correction is for "predictor-corrector"
# Reference [1] Eq. 8.13
rhatxs -= d_x * d_z
rhattk -= d_tau * d_kappa
# sometimes numerical difficulties arise as the solution is approached
# this loop tries to solve the equations using a sequence of functions
# for solve. For dense systems, the order is:
# 1. scipy.linalg.cho_factor/scipy.linalg.cho_solve,
# 2. scipy.linalg.solve w/ sym_pos = True,
# 3. scipy.linalg.solve w/ sym_pos = False, and if all else fails
# 4. scipy.linalg.lstsq
# For sparse systems, the order is:
# 1. scipy.sparse.linalg.splu
# 2. scipy.sparse.linalg.lsqr
# TODO: if umfpack is installed, use factorized instead of splu.
# Can't do that now because factorized doesn't pass permc_spec
# to splu if umfpack isn't installed. Also, umfpack not tested.
solved = False
while(not solved):
try:
solve_this = L if cholesky else M
# [1] Equation 8.28
p, q = _sym_solve(Dinv, solve_this, A, c, b, solve, splu)
# [1] Equation 8.29
u, v = _sym_solve(Dinv, solve_this, A, rhatd -
(1 / x) * rhatxs, rhatp, solve, splu)
if np.any(np.isnan(p)) or np.any(np.isnan(q)):
raise LinAlgError
solved = True
except (LinAlgError, ValueError) as e:
# Usually this doesn't happen. If it does, it happens when
# there are redundant constraints or when approaching the
# solution. If so, change solver.
cholesky = False
if not lstsq:
if sym_pos:
warn(
"Solving system with option 'sym_pos':True "
"failed. It is normal for this to happen "
"occasionally, especially as the solution is "
"approached. However, if you see this frequently, "
"consider setting option 'sym_pos' to False.",
OptimizeWarning)
sym_pos = False
else:
warn(
"Solving system with option 'sym_pos':False "
"failed. This may happen occasionally, "
"especially as the solution is "
"approached. However, if you see this frequently, "
"your problem may be numerically challenging. "
"If you cannot improve the formulation, consider "
"setting 'lstsq' to True. Consider also setting "
"`presolve` to True, if it is not already.",
OptimizeWarning)
lstsq = True
else:
raise e
solve = _get_solver(sparse, lstsq, sym_pos)
# [1] Results after 8.29
d_tau = ((rhatg + 1 / tau * rhattk - (-c.dot(u) + b.dot(v))) /
(1 / tau * kappa + (-c.dot(p) + b.dot(q))))
d_x = u + p * d_tau
d_y = v + q * d_tau
# [1] Relations between after 8.25 and 8.26
d_z = (1 / x) * (rhatxs - z * d_x)
d_kappa = 1 / tau * (rhattk - kappa * d_tau)
# [1] 8.12 and "Let alpha be the maximal possible step..." before 8.23
alpha = _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, 1)
if ip: # initial point - see [1] 4.4
gamma = 10
else: # predictor-corrector, [1] definition after 8.12
beta1 = 0.1 # [1] pg. 220 (Table 8.1)
gamma = (1 - alpha)**2 * min(beta1, (1 - alpha))
i += 1
return d_x, d_y, d_z, d_tau, d_kappa
def _sym_solve(Dinv, M, A, r1, r2, solve, splu=False):
"""
An implementation of [1] equation 8.31 and 8.32
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
"""
# [1] 8.31
r = r2 + A.dot(Dinv * r1)
if splu:
v = solve(r)
else:
v = solve(M, r)
# [1] 8.32
u = Dinv * (A.T.dot(v) - r1)
return u, v
def _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, alpha0):
"""
An implementation of [1] equation 8.21
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
"""
# [1] 4.3 Equation 8.21, ignoring 8.20 requirement
# same step is taken in primal and dual spaces
# alpha0 is basically beta3 from [1] Table 8.1, but instead of beta3
# the value 1 is used in Mehrota corrector and initial point correction
i_x = d_x < 0
i_z = d_z < 0
alpha_x = alpha0 * np.min(x[i_x] / -d_x[i_x]) if np.any(i_x) else 1
alpha_tau = alpha0 * tau / -d_tau if d_tau < 0 else 1
alpha_z = alpha0 * np.min(z[i_z] / -d_z[i_z]) if np.any(i_z) else 1
alpha_kappa = alpha0 * kappa / -d_kappa if d_kappa < 0 else 1
alpha = np.min([1, alpha_x, alpha_tau, alpha_z, alpha_kappa])
return alpha
def _get_message(status):
"""
Given problem status code, return a more detailed message.
Parameters
----------
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered.
Returns
-------
message : str
A string descriptor of the exit status of the optimization.
"""
messages = (
["Optimization terminated successfully.",
"The iteration limit was reached before the algorithm converged.",
"The algorithm terminated successfully and determined that the "
"problem is infeasible.",
"The algorithm terminated successfully and determined that the "
"problem is unbounded.",
"Numerical difficulties were encountered before the problem "
"converged. Please check your problem formulation for errors, "
"independence of linear equality constraints, and reasonable "
"scaling and matrix condition numbers. If you continue to "
"encounter this error, please submit a bug report."
])
return messages[status]
def _do_step(x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha):
"""
An implementation of [1] Equation 8.9
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
"""
x = x + alpha * d_x
tau = tau + alpha * d_tau
z = z + alpha * d_z
kappa = kappa + alpha * d_kappa
y = y + alpha * d_y
return x, y, z, tau, kappa
def _get_blind_start(shape):
"""
Return the starting point from [1] 4.4
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
"""
m, n = shape
x0 = np.ones(n)
y0 = np.zeros(m)
z0 = np.ones(n)
tau0 = 1
kappa0 = 1
return x0, y0, z0, tau0, kappa0
def _indicators(A, b, c, c0, x, y, z, tau, kappa):
"""
Implementation of several equations from [1] used as indicators of
the status of optimization.
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
"""
# residuals for termination are relative to initial values
x0, y0, z0, tau0, kappa0 = _get_blind_start(A.shape)
# See [1], Section 4 - The Homogeneous Algorithm, Equation 8.8
def r_p(x, tau):
return b * tau - A.dot(x)
def r_d(y, z, tau):
return c * tau - A.T.dot(y) - z
def r_g(x, y, kappa):
return kappa + c.dot(x) - b.dot(y)
# np.dot unpacks if they are arrays of size one
def mu(x, tau, z, kappa):
return (x.dot(z) + np.dot(tau, kappa)) / (len(x) + 1)
obj = c.dot(x / tau) + c0
def norm(a):
return np.linalg.norm(a)
# See [1], Section 4.5 - The Stopping Criteria
r_p0 = r_p(x0, tau0)
r_d0 = r_d(y0, z0, tau0)
r_g0 = r_g(x0, y0, kappa0)
mu_0 = mu(x0, tau0, z0, kappa0)
rho_A = norm(c.T.dot(x) - b.T.dot(y)) / (tau + norm(b.T.dot(y)))
rho_p = norm(r_p(x, tau)) / max(1, norm(r_p0))
rho_d = norm(r_d(y, z, tau)) / max(1, norm(r_d0))
rho_g = norm(r_g(x, y, kappa)) / max(1, norm(r_g0))
rho_mu = mu(x, tau, z, kappa) / mu_0
return rho_p, rho_d, rho_A, rho_g, rho_mu, obj
def _display_iter(rho_p, rho_d, rho_g, alpha, rho_mu, obj, header=False):
"""
Print indicators of optimization status to the console.
Parameters
----------
rho_p : float
The (normalized) primal feasibility, see [1] 4.5
rho_d : float
The (normalized) dual feasibility, see [1] 4.5
rho_g : float
The (normalized) duality gap, see [1] 4.5
alpha : float
The step size, see [1] 4.3
rho_mu : float
The (normalized) path parameter, see [1] 4.5
obj : float
The objective function value of the current iterate
header : bool
True if a header is to be printed
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
"""
if header:
print("Primal Feasibility ",
"Dual Feasibility ",
"Duality Gap ",
"Step ",
"Path Parameter ",
"Objective ")
# no clue why this works
fmt = '{0:<20.13}{1:<20.13}{2:<20.13}{3:<17.13}{4:<20.13}{5:<20.13}'
print(fmt.format(
rho_p,
rho_d,
rho_g,
alpha,
rho_mu,
obj))
def _ip_hsd(A, b, c, c0, alpha0, beta, maxiter, disp, tol,
sparse, lstsq, sym_pos, cholesky, pc, ip, permc_spec):
r"""
Solve a linear programming problem in standard form:
minimize: c'^T * x'
subject to: A * x' == b
0 < x' < oo
using the interior point method of [1].
Parameters
----------
A : 2-D array
2-D array which, when matrix-multiplied by ``x``, gives the values of
the equality constraints at ``x`` (for standard form problem).
b : 1-D array
1-D array of values representing the RHS of each equality constraint
(row) in ``A`` (for standard form problem).
c : 1-D array
Coefficients of the linear objective function to be minimized (for
standard form problem).
c0 : float
Constant term in objective function due to fixed (and eliminated)
variables. (Purely for display.)
alpha0 : float
The maximal step size for Mehrota's predictor-corrector search
direction; see :math:`\beta_3`of [1] Table 8.1
beta : float
The desired reduction of the path parameter :math:`\mu` (see [3]_)
maxiter : int
The maximum number of iterations of the algorithm.
disp : bool
Set to ``True`` if indicators of optimization status are to be printed
to the console each iteration.
tol : float
Termination tolerance; see [1]_ Section 4.5.
sparse : bool
Set to ``True`` if the problem is to be treated as sparse. However,
the inputs ``A_eq`` and ``A_ub`` should nonetheless be provided as
(dense) arrays rather than sparse matrices.
lstsq : bool
Set to ``True`` if the problem is expected to be very poorly
conditioned. This should always be left as ``False`` unless severe
numerical difficulties are frequently encountered, and a better option
would be to improve the formulation of the problem.
sym_pos : bool
Leave ``True`` if the problem is expected to yield a well conditioned
symmetric positive definite normal equation matrix (almost always).
cholesky : bool
Set to ``True`` if the normal equations are to be solved by explicit
Cholesky decomposition followed by explicit forward/backward
substitution. This is typically faster for moderate, dense problems
that are numerically well-behaved.
pc : bool
Leave ``True`` if the predictor-corrector method of Mehrota is to be
used. This is almost always (if not always) beneficial.
ip : bool
Set to ``True`` if the improved initial point suggestion due to [1]_
Section 4.3 is desired. It's unclear whether this is beneficial.
permc_spec : str (default = 'MMD_AT_PLUS_A')
(Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
True``.) A matrix is factorized in each iteration of the algorithm.
This option specifies how to permute the columns of the matrix for
sparsity preservation. Acceptable values are:
- ``NATURAL``: natural ordering.
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
- ``COLAMD``: approximate minimum degree column ordering.
This option can impact the convergence of the
interior point algorithm; test different values to determine which
performs best for your problem. For more information, refer to
``scipy.sparse.linalg.splu``.
Returns
-------
x_hat : float
Solution vector (for standard form problem).
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered.
message : str
A string descriptor of the exit status of the optimization.
iteration : int
The number of iterations taken to solve the problem
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
.. [3] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
Programming based on Newton's Method." Unpublished Course Notes,
March 2004. Available 2/25/2017 at:
https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
"""
iteration = 0
# default initial point
x, y, z, tau, kappa = _get_blind_start(A.shape)
# first iteration is special improvement of initial point
ip = ip if pc else False
# [1] 4.5
rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators(
A, b, c, c0, x, y, z, tau, kappa)
go = rho_p > tol or rho_d > tol or rho_A > tol # we might get lucky : )
if disp:
_display_iter(rho_p, rho_d, rho_g, "-", rho_mu, obj, header=True)
status = 0
message = "Optimization terminated successfully."
if sparse:
A = sps.csc_matrix(A)
A.T = A.transpose() # A.T is defined for sparse matrices but is slow
# Redefine it to avoid calculating again
# This is fine as long as A doesn't change
while go:
iteration += 1
if ip: # initial point
# [1] Section 4.4
gamma = 1
def eta(g):
return 1
else:
# gamma = 0 in predictor step according to [1] 4.1
# if predictor/corrector is off, use mean of complementarity [3]
# 5.1 / [4] Below Figure 10-4
gamma = 0 if pc else beta * np.mean(z * x)
# [1] Section 4.1
def eta(g=gamma):
return 1 - g
try:
# Solve [1] 8.6 and 8.7/8.13/8.23
d_x, d_y, d_z, d_tau, d_kappa = _get_delta(
A, b, c, x, y, z, tau, kappa, gamma, eta,
sparse, lstsq, sym_pos, cholesky, pc, ip, permc_spec)
if ip: # initial point
# [1] 4.4
# Formula after 8.23 takes a full step regardless if this will
# take it negative
alpha = 1.0
x, y, z, tau, kappa = _do_step(
x, y, z, tau, kappa, d_x, d_y,
d_z, d_tau, d_kappa, alpha)
x[x < 1] = 1
z[z < 1] = 1
tau = max(1, tau)
kappa = max(1, kappa)
ip = False # done with initial point
else:
# [1] Section 4.3
alpha = _get_step(x, d_x, z, d_z, tau,
d_tau, kappa, d_kappa, alpha0)
# [1] Equation 8.9
x, y, z, tau, kappa = _do_step(
x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha)
except (LinAlgError, FloatingPointError,
ValueError, ZeroDivisionError):
# this can happen when sparse solver is used and presolve
# is turned off. Also observed ValueError in AppVeyor Python 3.6
# Win32 build (PR #8676). I've never seen it otherwise.
status = 4
message = _get_message(status)
break
# [1] 4.5
rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators(
A, b, c, c0, x, y, z, tau, kappa)
go = rho_p > tol or rho_d > tol or rho_A > tol
if disp:
_display_iter(rho_p, rho_d, rho_g, alpha, float(rho_mu), obj)
# [1] 4.5
inf1 = (rho_p < tol and rho_d < tol and rho_g < tol and tau < tol *
max(1, kappa))
inf2 = rho_mu < tol and tau < tol * min(1, kappa)
if inf1 or inf2:
# [1] Lemma 8.4 / Theorem 8.3
if b.transpose().dot(y) > tol:
status = 2
else: # elif c.T.dot(x) < tol: ? Probably not necessary.
status = 3
message = _get_message(status)
break
elif iteration >= maxiter:
status = 1
message = _get_message(status)
break
if disp:
print(message)
x_hat = x / tau
# [1] Statement after Theorem 8.2
return x_hat, status, message, iteration
def _linprog_ip(
c,
A_ub=None,
b_ub=None,
A_eq=None,
b_eq=None,
bounds=None,
callback=None,
alpha0=.99995,
beta=0.1,
maxiter=1000,
disp=False,
tol=1e-8,
sparse=False,
lstsq=False,
sym_pos=True,
cholesky=None,
pc=True,
ip=False,
presolve=True,
permc_spec='MMD_AT_PLUS_A',
rr=True,
_sparse_presolve=False,
**unknown_options):
r"""
Minimize a linear objective function subject to linear
equality constraints, linear inequality constraints, and simple bounds
using the interior point method of [1]_.
Linear programming is intended to solve problems of the following form::
Minimize: c^T * x
Subject to: A_ub * x <= b_ub
A_eq * x == b_eq
bounds[i][0] < x_i < bounds[i][1]
Parameters
----------
c : array_like
Coefficients of the linear objective function to be minimized.
A_ub : array_like, optional
2-D array which, when matrix-multiplied by ``x``, gives the values of
the upper-bound inequality constraints at ``x``.
b_ub : array_like, optional
1-D array of values representing the upper-bound of each inequality
constraint (row) in ``A_ub``.
A_eq : array_like, optional
2-D array which, when matrix-multiplied by ``x``, gives the values of
the equality constraints at ``x``.
b_eq : array_like, optional
1-D array of values representing the right hand side of each equality
constraint (row) in ``A_eq``.
bounds : sequence, optional
``(min, max)`` pairs for each element in ``x``, defining
the bounds on that parameter. Use ``None`` for one of ``min`` or
``max`` when there is no bound in that direction. By default
bounds are ``(0, None)`` (non-negative).
If a sequence containing a single tuple is provided, then ``min`` and
``max`` will be applied to all variables in the problem.
Options
-------
maxiter : int (default = 1000)
The maximum number of iterations of the algorithm.
disp : bool (default = False)
Set to ``True`` if indicators of optimization status are to be printed
to the console each iteration.
tol : float (default = 1e-8)
Termination tolerance to be used for all termination criteria;
see [1]_ Section 4.5.
alpha0 : float (default = 0.99995)
The maximal step size for Mehrota's predictor-corrector search
direction; see :math:`\beta_{3}` of [1]_ Table 8.1.
beta : float (default = 0.1)
The desired reduction of the path parameter :math:`\mu` (see [3]_)
when Mehrota's predictor-corrector is not in use (uncommon).
sparse : bool (default = False)
Set to ``True`` if the problem is to be treated as sparse after
presolve. If either ``A_eq`` or ``A_ub`` is a sparse matrix,
this option will automatically be set ``True``, and the problem
will be treated as sparse even during presolve. If your constraint
matrices contain mostly zeros and the problem is not very small (less
than about 100 constraints or variables), consider setting ``True``
or providing ``A_eq`` and ``A_ub`` as sparse matrices.
lstsq : bool (default = False)
Set to ``True`` if the problem is expected to be very poorly
conditioned. This should always be left ``False`` unless severe
numerical difficulties are encountered. Leave this at the default
unless you receive a warning message suggesting otherwise.
sym_pos : bool (default = True)
Leave ``True`` if the problem is expected to yield a well conditioned
symmetric positive definite normal equation matrix
(almost always). Leave this at the default unless you receive
a warning message suggesting otherwise.
cholesky : bool (default = True)
Set to ``True`` if the normal equations are to be solved by explicit
Cholesky decomposition followed by explicit forward/backward
substitution. This is typically faster for moderate, dense problems
that are numerically well-behaved.
pc : bool (default = True)
Leave ``True`` if the predictor-corrector method of Mehrota is to be
used. This is almost always (if not always) beneficial.
ip : bool (default = False)
Set to ``True`` if the improved initial point suggestion due to [1]_
Section 4.3 is desired. Whether this is beneficial or not
depends on the problem.
presolve : bool (default = True)
Leave ``True`` if presolve routine should be run. The presolve routine
is almost always useful because it can detect trivial infeasibilities
and unboundedness, eliminate fixed variables, and remove redundancies.
One circumstance in which it might be turned off (set ``False``) is
when it detects that the problem is trivially unbounded; it is possible
that that the problem is truly infeasibile but this has not been
detected.
rr : bool (default = True)
Default ``True`` attempts to eliminate any redundant rows in ``A_eq``.
Set ``False`` if ``A_eq`` is known to be of full row rank, or if you
are looking for a potential speedup (at the expense of reliability).
permc_spec : str (default = 'MMD_AT_PLUS_A')
(Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
True``.) A matrix is factorized in each iteration of the algorithm.
This option specifies how to permute the columns of the matrix for
sparsity preservation. Acceptable values are:
- ``NATURAL``: natural ordering.
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
- ``COLAMD``: approximate minimum degree column ordering.
This option can impact the convergence of the
interior point algorithm; test different values to determine which
performs best for your problem. For more information, refer to
``scipy.sparse.linalg.splu``.
Returns
-------
A ``scipy.optimize.OptimizeResult`` consisting of the following fields:
x : ndarray
The independent variable vector which optimizes the linear
programming problem.
fun : float
The optimal value of the objective function
con : float
The residuals of the equality constraints (nominally zero).
slack : ndarray
The values of the slack variables. Each slack variable corresponds
to an inequality constraint. If the slack is zero, then the
corresponding constraint is active.
success : bool
Returns True if the algorithm succeeded in finding an optimal
solution.
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
nit : int
The number of iterations performed.
message : str
A string descriptor of the exit status of the optimization.
Notes
-----
This method implements the algorithm outlined in [1]_ with ideas from [5]_
and a structure inspired by the simpler methods of [3]_ and [4]_.
First, a presolve procedure based on [5]_ attempts to identify trivial
infeasibilities, trivial unboundedness, and potential problem
simplifications. Specifically, it checks for:
- rows of zeros in ``A_eq`` or ``A_ub``, representing trivial constraints;
- columns of zeros in ``A_eq`` `and` ``A_ub``, representing unconstrained
variables;
- column singletons in ``A_eq``, representing fixed variables; and
- column singletons in ``A_ub``, representing simple bounds.
If presolve reveals that the problem is unbounded (e.g. an unconstrained
and unbounded variable has negative cost) or infeasible (e.g. a row of
zeros in ``A_eq`` corresponds with a nonzero in ``b_eq``), the solver
terminates with the appropriate status code. Note that presolve terminates
as soon as any sign of unboundedness is detected; consequently, a problem
may be reported as unbounded when in reality the problem is infeasible
(but infeasibility has not been detected yet). Therefore, if the output
message states that unboundedness is detected in presolve and it is
necessary to know whether the problem is actually infeasible, set option
``presolve=False``.
If neither infeasibility nor unboundedness are detected in a single pass
of the presolve check, bounds are tightened where possible and fixed
variables are removed from the problem. Then, linearly dependent rows
of the ``A_eq`` matrix are removed, (unless they represent an
infeasibility) to avoid numerical difficulties in the primary solve
routine. Note that rows that are nearly linearly dependent (within a
prescibed tolerance) may also be removed, which can change the optimal
solution in rare cases. If this is a concern, eliminate redundancy from
your problem formulation and run with option ``rr=False`` or
``presolve=False``.
Several potential improvements can be made here: additional presolve
checks outlined in [5]_ should be implemented, the presolve routine should
be run multiple times (until no further simplifications can be made), and
more of the efficiency improvements from [2]_ should be implemented in the
redundancy removal routines.
After presolve, the problem is transformed to standard form by converting
the (tightened) simple bounds to upper bound constraints, introducing
non-negative slack variables for inequality constraints, and expressing
unbounded variables as the difference between two non-negative variables.
The primal-dual path following method begins with initial 'guesses' of
the primal and dual variables of the standard form problem and iteratively
attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the
problem with a gradually reduced logarithmic barrier term added to the
objective. This particular implementation uses a homogeneous self-dual
formulation, which provides certificates of infeasibility or unboundedness
where applicable.
The default initial point for the primal and dual variables is that
defined in [1]_ Section 4.4 Equation 8.22. Optionally (by setting initial
point option ``ip=True``), an alternate (potentially improved) starting
point can be calculated according to the additional recommendations of
[1]_ Section 4.4.
A search direction is calculated using the predictor-corrector method
(single correction) proposed by Mehrota and detailed in [1]_ Section 4.1.
(A potential improvement would be to implement the method of multiple
corrections described in [1]_ Section 4.2.) In practice, this is
accomplished by solving the normal equations, [1]_ Section 5.1 Equations
8.31 and 8.32, derived from the Newton equations [1]_ Section 5 Equations
8.25 (compare to [1]_ Section 4 Equations 8.6-8.8). The advantage of
solving the normal equations rather than 8.25 directly is that the
matrices involved are symmetric positive definite, so Cholesky
decomposition can be used rather than the more expensive LU factorization.
With the default ``cholesky=True``, this is accomplished using
``scipy.linalg.cho_factor`` followed by forward/backward substitutions
via ``scipy.linalg.cho_solve``. With ``cholesky=False`` and
``sym_pos=True``, Cholesky decomposition is performed instead by
``scipy.linalg.solve``. Based on speed tests, this also appears to retain
the Cholesky decomposition of the matrix for later use, which is beneficial
as the same system is solved four times with different right hand sides
in each iteration of the algorithm.
In problems with redundancy (e.g. if presolve is turned off with option
``presolve=False``) or if the matrices become ill-conditioned (e.g. as the
solution is approached and some decision variables approach zero),
Cholesky decomposition can fail. Should this occur, successively more
robust solvers (``scipy.linalg.solve`` with ``sym_pos=False`` then
``scipy.linalg.lstsq``) are tried, at the cost of computational efficiency.
These solvers can be used from the outset by setting the options
``sym_pos=False`` and ``lstsq=True``, respectively.
Note that with the option ``sparse=True``, the normal equations are solved
using ``scipy.sparse.linalg.spsolve``. Unfortunately, this uses the more
expensive LU decomposition from the outset, but for large, sparse problems,
the use of sparse linear algebra techniques improves the solve speed
despite the use of LU rather than Cholesky decomposition. A simple
improvement would be to use the sparse Cholesky decomposition of
``CHOLMOD`` via ``scikit-sparse`` when available.
Other potential improvements for combatting issues associated with dense
columns in otherwise sparse problems are outlined in [1]_ Section 5.3 and
[7]_ Section 4.1-4.2; the latter also discusses the alleviation of
accuracy issues associated with the substitution approach to free
variables.
After calculating the search direction, the maximum possible step size
that does not activate the non-negativity constraints is calculated, and
the smaller of this step size and unity is applied (as in [1]_ Section
4.1.) [1]_ Section 4.3 suggests improvements for choosing the step size.
The new point is tested according to the termination conditions of [1]_
Section 4.5. The same tolerance, which can be set using the ``tol`` option,
is used for all checks. (A potential improvement would be to expose
the different tolerances to be set independently.) If optimality,
unboundedness, or infeasibility is detected, the solve procedure
terminates; otherwise it repeats.
If optimality is achieved, a postsolve procedure undoes transformations
associated with presolve and converting to standard form. It then
calculates the residuals (equality constraint violations, which should
be very small) and slacks (difference between the left and right hand
sides of the upper bound constraints) of the original problem, which are
returned with the solution in an ``OptimizeResult`` object.
References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
optimizer for linear programming: an implementation of the
homogeneous algorithm." High performance optimization. Springer US,
2000. 197-232.
.. [2] Andersen, Erling D. "Finding all linearly dependent rows in
large-scale linear programming." Optimization Methods and Software
6.3 (1995): 219-227.
.. [3] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
Programming based on Newton's Method." Unpublished Course Notes,
March 2004. Available 2/25/2017 at
https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
.. [4] Fourer, Robert. "Solving Linear Programs by Interior-Point Methods."
Unpublished Course Notes, August 26, 2005. Available 2/25/2017 at
http://www.4er.org/CourseNotes/Book%20B/B-III.pdf
.. [5] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
programming." Mathematical Programming 71.2 (1995): 221-245.
.. [6] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
programming." Athena Scientific 1 (1997): 997.
.. [7] Andersen, Erling D., et al. Implementation of interior point methods
for large scale linear programming. HEC/Universite de Geneve, 1996.
"""
_check_unknown_options(unknown_options)
if callback is not None:
raise NotImplementedError("method 'interior-point' does not support "
"callback functions.")
# This is an undocumented option for unit testing sparse presolve
if _sparse_presolve and A_eq is not None:
A_eq = sp.sparse.coo_matrix(A_eq)
if _sparse_presolve and A_ub is not None:
A_ub = sp.sparse.coo_matrix(A_ub)
# These should be warnings, not errors
if not sparse and (sp.sparse.issparse(A_eq) or sp.sparse.issparse(A_ub)):
sparse = True
warn("Sparse constraint matrix detected; setting 'sparse':True.",
OptimizeWarning)
if sparse and lstsq:
warn("Invalid option combination 'sparse':True "
"and 'lstsq':True; Sparse least squares is not recommended.",
OptimizeWarning)
if sparse and not sym_pos:
warn("Invalid option combination 'sparse':True "
"and 'sym_pos':False; the effect is the same as sparse least "
"squares, which is not recommended.",
OptimizeWarning)
if sparse and cholesky:
# Cholesky decomposition is not available for sparse problems
warn("Invalid option combination 'sparse':True "
"and 'cholesky':True; sparse Colesky decomposition is not "
"available.",
OptimizeWarning)
if lstsq and cholesky:
warn("Invalid option combination 'lstsq':True "
"and 'cholesky':True; option 'cholesky' has no effect when "
"'lstsq' is set True.",
OptimizeWarning)
valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD')
if permc_spec.upper() not in valid_permc_spec:
warn("Invalid permc_spec option: '" + str(permc_spec) + "'. "
"Acceptable values are 'NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', "
"and 'COLAMD'. Reverting to default.",
OptimizeWarning)
permc_spec = 'MMD_AT_PLUS_A'
# This can be an error
if not sym_pos and cholesky:
raise ValueError(
"Invalid option combination 'sym_pos':False "
"and 'cholesky':True: Cholesky decomposition is only possible "
"for symmetric positive definite matrices.")
cholesky = cholesky is None and sym_pos and not sparse and not lstsq
iteration = 0
complete = False # will become True if solved in presolve
undo = []
# Convert lists to numpy arrays, etc...
c, A_ub, b_ub, A_eq, b_eq, bounds = _clean_inputs(
c, A_ub, b_ub, A_eq, b_eq, bounds)
# Keep the original arrays to calculate slack/residuals for original
# problem.
c_o, A_ub_o, b_ub_o, A_eq_o, b_eq_o = c.copy(
), A_ub.copy(), b_ub.copy(), A_eq.copy(), b_eq.copy()
# Solve trivial problem, eliminate variables, tighten bounds, etc...
c0 = 0 # we might get a constant term in the objective
if presolve is True:
(c, c0, A_ub, b_ub, A_eq, b_eq, bounds, x, undo, complete, status,
message) = _presolve(c, A_ub, b_ub, A_eq, b_eq, bounds, rr)
# If not solved in presolve, solve it
if not complete:
# Convert problem to standard form
A, b, c, c0 = _get_Abc(c, c0, A_ub, b_ub, A_eq, b_eq, bounds, undo)
# Solve the problem
x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta,
maxiter, disp, tol, sparse,
lstsq, sym_pos, cholesky,
pc, ip, permc_spec)
# Eliminate artificial variables, re-introduce presolved variables, etc...
# need modified bounds here to translate variables appropriately
x, fun, slack, con, status, message = _postprocess(
x, c_o, A_ub_o, b_ub_o, A_eq_o, b_eq_o,
bounds, complete, undo, status, message, tol)
sol = {
'x': x,
'fun': fun,
'slack': slack,
'con': con,
'status': status,
'message': message,
'nit': iteration,
"success": status == 0}
return OptimizeResult(sol)
|