1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
/* MIT License
*
* Copyright (c) 2016--2017 Felix Lenders
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include "trlib.h"
#include "trlib_private.h"
#include "_c99compat.h"
trlib_int_t trlib_eigen_inverse(
trlib_int_t n, trlib_flt_t *diag, trlib_flt_t *offdiag,
trlib_flt_t lam_init, trlib_int_t itmax, trlib_flt_t tol_abs,
trlib_flt_t *ones, trlib_flt_t *diag_fac, trlib_flt_t *offdiag_fac,
trlib_flt_t *eig, trlib_int_t verbose, trlib_int_t unicode, char *prefix, FILE *fout,
trlib_int_t *timing, trlib_flt_t *lam_pert, trlib_flt_t *pert, trlib_int_t *iter_inv) {
// Local variables
#if TRLIB_MEASURE_TIME
struct timespec verystart, start, end;
TRLIB_TIC(verystart)
#endif
trlib_int_t info_fac = 0; // status variable for factorization
trlib_flt_t invnorm = 0.0; // 1/norm of eig before normalization
trlib_flt_t minuslam = - lam_init; // negative of current estimation of eigenvalue
trlib_int_t inc = 1; trlib_int_t nm = n-1;
trlib_int_t seeds[TRLIB_EIR_N_STARTVEC];
trlib_flt_t residuals[TRLIB_EIR_N_STARTVEC];
trlib_int_t jj = 0;
trlib_int_t kk = 0;
trlib_int_t seedpivot = 0;
*iter_inv = 0; // iteration counter
*pert = 0.0; // perturbation factor to update lam until factorization is possible
*iter_inv = 0;
*pert = 0.0;
info_fac = 0;
invnorm = 0.0;
minuslam = - lam_init;
// obtain factorization of T - lam*I, perturb until possible
// iter_inv is misused in this loop as flag if we can find a suitable lambda to start with
*iter_inv = TRLIB_EIR_FAIL_FACTOR;
while (*pert <= 1.0/TRLIB_EPS) {
// set diag_fac to diag - lam
TRLIB_DCOPY(&n, diag, &inc, diag_fac, &inc) // diag_fac <-- diag
TRLIB_DAXPY(&n, &minuslam, ones, &inc, diag_fac, &inc) // diag_fac <-- diag_fac - lam
TRLIB_DCOPY(&nm, offdiag, &inc, offdiag_fac, &inc) // offdiag_fac <-- offdiag
TRLIB_DPTTRF(&n, diag_fac, offdiag_fac, &info_fac); // compute factorization
if (info_fac == 0) { *iter_inv = 0; break; }
if (*pert == 0.0) {
*pert = TRLIB_EPS_POW_4 * fmax(1.0, -lam_init);
}
else {
*pert = 10.0*(*pert);
}
minuslam = *pert - lam_init;
}
*lam_pert = -minuslam;
if ( *iter_inv == TRLIB_EIR_FAIL_FACTOR ) { TRLIB_PRINTLN_2("Failure on factorizing in inverse correction!") TRLIB_RETURN(TRLIB_EIR_FAIL_FACTOR) }
// try with TRLIB_EIR_N_STARTVEC different start vectors and hope that it converges for one
seeds[0] = time(NULL);
for(jj = 1; jj < TRLIB_EIR_N_STARTVEC; ++jj ) { seeds[jj] = rand(); }
for(jj = 0; jj < TRLIB_EIR_N_STARTVEC; ++jj ) {
*iter_inv = 0;
srand((unsigned) seeds[jj]);
for(kk = 0; kk < n; ++kk ) { eig[kk] = ((trlib_flt_t)rand()/(trlib_flt_t)RAND_MAX); }
TRLIB_DNRM2(invnorm, &n, eig, &inc) invnorm = 1.0/invnorm;
TRLIB_DSCAL(&n, &invnorm, eig, &inc) // normalize eig
// perform inverse iteration
while (1) {
*iter_inv += 1;
if ( *iter_inv > itmax ) { break; }
// solve (T - lam*I)*eig_new = eig_old
TRLIB_DPTTRS(&n, &inc, diag_fac, offdiag_fac, eig, &n, &info_fac)
if( info_fac != 0 ) { TRLIB_PRINTLN_2("Failure on solving inverse correction!") TRLIB_RETURN(TRLIB_EIR_FAIL_LINSOLVE) }
// normalize eig
TRLIB_DNRM2(invnorm, &n, eig, &inc) invnorm = 1.0/invnorm;
TRLIB_DSCAL(&n, &invnorm, eig, &inc)
residuals[jj] = fabs(invnorm - *pert);
// check for convergence
if (residuals[jj] <= tol_abs ) { TRLIB_RETURN(TRLIB_EIR_CONV) }
}
}
// no convergence with any of the starting values.
// take the seed with least residual and redo computation
for(jj = 0; jj < TRLIB_EIR_N_STARTVEC; ++jj) { if (residuals[jj] < residuals[seedpivot]) { seedpivot = jj; } }
*iter_inv = 0;
srand((unsigned) seeds[seedpivot]);
for(kk = 0; kk < n; ++kk ) { eig[kk] = ((trlib_flt_t)rand()/(trlib_flt_t)RAND_MAX); }
TRLIB_DNRM2(invnorm, &n, eig, &inc) invnorm = 1.0/invnorm;
TRLIB_DSCAL(&n, &invnorm, eig, &inc) // normalize eig
// perform inverse iteration
while (1) {
*iter_inv += 1;
if ( *iter_inv > itmax ) { break; }
// solve (T - lam*I)*eig_new = eig_old
TRLIB_DPTTRS(&n, &inc, diag_fac, offdiag_fac, eig, &n, &info_fac)
if( info_fac != 0 ) { TRLIB_PRINTLN_2("Failure on solving inverse correction!") TRLIB_RETURN(TRLIB_EIR_FAIL_LINSOLVE) }
// normalize eig
TRLIB_DNRM2(invnorm, &n, eig, &inc) invnorm = 1.0/invnorm;
TRLIB_DSCAL(&n, &invnorm, eig, &inc)
residuals[seedpivot] = fabs(invnorm - *pert);
// check for convergence
if (residuals[seedpivot] <= tol_abs ) { TRLIB_RETURN(TRLIB_EIR_CONV) }
}
TRLIB_RETURN(TRLIB_EIR_ITMAX)
}
trlib_int_t trlib_eigen_timing_size() {
#if TRLIB_MEASURE_TIME
return 1 + TRLIB_SIZE_TIMING_LINALG;
#endif
return 0;
}
|