File: equality_constrained_sqp.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (218 lines) | stat: -rw-r--r-- 8,676 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""Byrd-Omojokun Trust-Region SQP method."""

from __future__ import division, print_function, absolute_import
from scipy.sparse import eye as speye
from .projections import projections
from .qp_subproblem import modified_dogleg, projected_cg, box_intersections
import numpy as np
from numpy.linalg import norm

__all__ = ['equality_constrained_sqp']


def default_scaling(x):
    n, = np.shape(x)
    return speye(n)


def equality_constrained_sqp(fun_and_constr, grad_and_jac, lagr_hess,
                             x0, fun0, grad0, constr0,
                             jac0, stop_criteria,
                             state,
                             initial_penalty,
                             initial_trust_radius,
                             factorization_method,
                             trust_lb=None,
                             trust_ub=None,
                             scaling=default_scaling):
    """Solve nonlinear equality-constrained problem using trust-region SQP.

    Solve optimization problem:

        minimize fun(x)
        subject to: constr(x) = 0

    using Byrd-Omojokun Trust-Region SQP method described in [1]_. Several
    implementation details are based on [2]_ and [3]_, p. 549.

    References
    ----------
    .. [1] Lalee, Marucha, Jorge Nocedal, and Todd Plantenga. "On the
           implementation of an algorithm for large-scale equality
           constrained optimization." SIAM Journal on
           Optimization 8.3 (1998): 682-706.
    .. [2] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
           "An interior point algorithm for large-scale nonlinear
           programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
    .. [3] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
           Second Edition (2006).
    """
    PENALTY_FACTOR = 0.3  # Rho from formula (3.51), reference [2]_, p.891.
    LARGE_REDUCTION_RATIO = 0.9
    INTERMEDIARY_REDUCTION_RATIO = 0.3
    SUFFICIENT_REDUCTION_RATIO = 1e-8  # Eta from reference [2]_, p.892.
    TRUST_ENLARGEMENT_FACTOR_L = 7.0
    TRUST_ENLARGEMENT_FACTOR_S = 2.0
    MAX_TRUST_REDUCTION = 0.5
    MIN_TRUST_REDUCTION = 0.1
    SOC_THRESHOLD = 0.1
    TR_FACTOR = 0.8  # Zeta from formula (3.21), reference [2]_, p.885.
    BOX_FACTOR = 0.5

    n, = np.shape(x0)  # Number of parameters

    # Set default lower and upper bounds.
    if trust_lb is None:
        trust_lb = np.full(n, -np.inf)
    if trust_ub is None:
        trust_ub = np.full(n, np.inf)

    # Initial values
    x = np.copy(x0)
    trust_radius = initial_trust_radius
    penalty = initial_penalty
    # Compute Values
    f = fun0
    c = grad0
    b = constr0
    A = jac0
    S = scaling(x)
    # Get projections
    Z, LS, Y = projections(A, factorization_method)
    # Compute least-square lagrange multipliers
    v = -LS.dot(c)
    # Compute Hessian
    H = lagr_hess(x, v)

    # Update state parameters
    optimality = norm(c + A.T.dot(v), np.inf)
    constr_violation = norm(b, np.inf) if len(b) > 0 else 0
    cg_info = {'niter': 0, 'stop_cond': 0,
               'hits_boundary': False}

    last_iteration_failed = False
    while not stop_criteria(state, x, last_iteration_failed,
                            optimality, constr_violation,
                            trust_radius, penalty, cg_info):
        # Normal Step - `dn`
        # minimize 1/2*||A dn + b||^2
        # subject to:
        # ||dn|| <= TR_FACTOR * trust_radius
        # BOX_FACTOR * lb <= dn <= BOX_FACTOR * ub.
        dn = modified_dogleg(A, Y, b,
                             TR_FACTOR*trust_radius,
                             BOX_FACTOR*trust_lb,
                             BOX_FACTOR*trust_ub)

        # Tangential Step - `dt`
        # Solve the QP problem:
        # minimize 1/2 dt.T H dt + dt.T (H dn + c)
        # subject to:
        # A dt = 0
        # ||dt|| <= sqrt(trust_radius**2 - ||dn||**2)
        # lb - dn <= dt <= ub - dn
        c_t = H.dot(dn) + c
        b_t = np.zeros_like(b)
        trust_radius_t = np.sqrt(trust_radius**2 - np.linalg.norm(dn)**2)
        lb_t = trust_lb - dn
        ub_t = trust_ub - dn
        dt, cg_info = projected_cg(H, c_t, Z, Y, b_t,
                                   trust_radius_t,
                                   lb_t, ub_t)

        # Compute update (normal + tangential steps).
        d = dn + dt

        # Compute second order model: 1/2 d H d + c.T d + f.
        quadratic_model = 1/2*(H.dot(d)).dot(d) + c.T.dot(d)
        # Compute linearized constraint: l = A d + b.
        linearized_constr = A.dot(d)+b
        # Compute new penalty parameter according to formula (3.52),
        # reference [2]_, p.891.
        vpred = norm(b) - norm(linearized_constr)
        # Guarantee `vpred` always positive,
        # regardless of roundoff errors.
        vpred = max(1e-16, vpred)
        previous_penalty = penalty
        if quadratic_model > 0:
            new_penalty = quadratic_model / ((1-PENALTY_FACTOR)*vpred)
            penalty = max(penalty, new_penalty)
        # Compute predicted reduction according to formula (3.52),
        # reference [2]_, p.891.
        predicted_reduction = -quadratic_model + penalty*vpred

        # Compute merit function at current point
        merit_function = f + penalty*norm(b)
        # Evaluate function and constraints at trial point
        x_next = x + S.dot(d)
        f_next, b_next = fun_and_constr(x_next)
        # Compute merit function at trial point
        merit_function_next = f_next + penalty*norm(b_next)
        # Compute actual reduction according to formula (3.54),
        # reference [2]_, p.892.
        actual_reduction = merit_function - merit_function_next
        # Compute reduction ratio
        reduction_ratio = actual_reduction / predicted_reduction

        # Second order correction (SOC), reference [2]_, p.892.
        if reduction_ratio < SUFFICIENT_REDUCTION_RATIO and \
           norm(dn) <= SOC_THRESHOLD * norm(dt):
            # Compute second order correction
            y = -Y.dot(b_next)
            # Make sure increment is inside box constraints
            _, t, intersect = box_intersections(d, y, trust_lb, trust_ub)
            # Compute tentative point
            x_soc = x + S.dot(d + t*y)
            f_soc, b_soc = fun_and_constr(x_soc)
            # Recompute actual reduction
            merit_function_soc = f_soc + penalty*norm(b_soc)
            actual_reduction_soc = merit_function - merit_function_soc
            # Recompute reduction ratio
            reduction_ratio_soc = actual_reduction_soc / predicted_reduction
            if intersect and reduction_ratio_soc >= SUFFICIENT_REDUCTION_RATIO:
                x_next = x_soc
                f_next = f_soc
                b_next = b_soc
                reduction_ratio = reduction_ratio_soc

        # Readjust trust region step, formula (3.55), reference [2]_, p.892.
        if reduction_ratio >= LARGE_REDUCTION_RATIO:
            trust_radius = max(TRUST_ENLARGEMENT_FACTOR_L * norm(d),
                               trust_radius)
        elif reduction_ratio >= INTERMEDIARY_REDUCTION_RATIO:
            trust_radius = max(TRUST_ENLARGEMENT_FACTOR_S * norm(d),
                               trust_radius)
        # Reduce trust region step, according to reference [3]_, p.696.
        elif reduction_ratio < SUFFICIENT_REDUCTION_RATIO:
                trust_reduction \
                    = (1-SUFFICIENT_REDUCTION_RATIO)/(1-reduction_ratio)
                new_trust_radius = trust_reduction * norm(d)
                if new_trust_radius >= MAX_TRUST_REDUCTION * trust_radius:
                    trust_radius *= MAX_TRUST_REDUCTION
                elif new_trust_radius >= MIN_TRUST_REDUCTION * trust_radius:
                    trust_radius = new_trust_radius
                else:
                    trust_radius *= MIN_TRUST_REDUCTION

        # Update iteration
        if reduction_ratio >= SUFFICIENT_REDUCTION_RATIO:
            x = x_next
            f, b = f_next, b_next
            c, A = grad_and_jac(x)
            S = scaling(x)
            # Get projections
            Z, LS, Y = projections(A, factorization_method)
            # Compute least-square lagrange multipliers
            v = -LS.dot(c)
            # Compute Hessian
            H = lagr_hess(x, v)
            # Set Flag
            last_iteration_failed = False
            # Otimality values
            optimality = norm(c + A.T.dot(v), np.inf)
            constr_violation = norm(b, np.inf) if len(b) > 0 else 0
        else:
            penalty = previous_penalty
            last_iteration_failed = True

    return x, state