1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
from __future__ import division, print_function, absolute_import
import time
import numpy as np
from scipy.sparse.linalg import LinearOperator
from .._differentiable_functions import VectorFunction
from .._constraints import (
NonlinearConstraint, LinearConstraint, PreparedConstraint, strict_bounds)
from ..optimize import OptimizeResult
from .._differentiable_functions import ScalarFunction
from .equality_constrained_sqp import equality_constrained_sqp
from .canonical_constraint import (CanonicalConstraint,
initial_constraints_as_canonical)
from .tr_interior_point import tr_interior_point
from .report import BasicReport, SQPReport, IPReport
TERMINATION_MESSAGES = {
0: "The maximum number of function evaluations is exceeded.",
1: "`gtol` termination condition is satisfied.",
2: "`xtol` termination condition is satisfied.",
3: "`callback` function requested termination"
}
class HessianLinearOperator(object):
"""Build LinearOperator from hessp"""
def __init__(self, hessp, n):
self.hessp = hessp
self.n = n
def __call__(self, x, *args):
def matvec(p):
return self.hessp(x, p, *args)
return LinearOperator((self.n, self.n), matvec=matvec)
class LagrangianHessian(object):
"""The Hessian of the Lagrangian as LinearOperator.
The Lagrangian is computed as the objective function plus all the
constraints multiplied with some numbers (Lagrange multipliers).
"""
def __init__(self, n, objective_hess, constraints_hess):
self.n = n
self.objective_hess = objective_hess
self.constraints_hess = constraints_hess
def __call__(self, x, v_eq=np.empty(0), v_ineq=np.empty(0)):
H_objective = self.objective_hess(x)
H_constraints = self.constraints_hess(x, v_eq, v_ineq)
def matvec(p):
return H_objective.dot(p) + H_constraints.dot(p)
return LinearOperator((self.n, self.n), matvec)
def update_state_sqp(state, x, last_iteration_failed, objective, prepared_constraints,
start_time, tr_radius, constr_penalty, cg_info):
state.niter += 1
state.nfev = objective.nfev
state.njev = objective.ngev
state.nhev = objective.nhev
state.constr_nfev = [c.fun.nfev if isinstance(c.fun, VectorFunction) else 0
for c in prepared_constraints]
state.constr_njev = [c.fun.njev if isinstance(c.fun, VectorFunction) else 0
for c in prepared_constraints]
state.constr_nhev = [c.fun.nhev if isinstance(c.fun, VectorFunction) else 0
for c in prepared_constraints]
if not last_iteration_failed:
state.x = x
state.fun = objective.f
state.grad = objective.g
state.v = [c.fun.v for c in prepared_constraints]
state.constr = [c.fun.f for c in prepared_constraints]
state.jac = [c.fun.J for c in prepared_constraints]
# Compute Lagrangian Gradient
state.lagrangian_grad = np.copy(state.grad)
for c in prepared_constraints:
state.lagrangian_grad += c.fun.J.T.dot(c.fun.v)
state.optimality = np.linalg.norm(state.lagrangian_grad, np.inf)
# Compute maximum constraint violation
state.constr_violation = 0
for i in range(len(prepared_constraints)):
lb, ub = prepared_constraints[i].bounds
c = state.constr[i]
state.constr_violation = np.max([state.constr_violation,
np.max(lb - c),
np.max(c - ub)])
state.execution_time = time.time() - start_time
state.tr_radius = tr_radius
state.constr_penalty = constr_penalty
state.cg_niter += cg_info["niter"]
state.cg_stop_cond = cg_info["stop_cond"]
return state
def update_state_ip(state, x, last_iteration_failed, objective,
prepared_constraints, start_time,
tr_radius, constr_penalty, cg_info,
barrier_parameter, barrier_tolerance):
state = update_state_sqp(state, x, last_iteration_failed, objective,
prepared_constraints, start_time, tr_radius,
constr_penalty, cg_info)
state.barrier_parameter = barrier_parameter
state.barrier_tolerance = barrier_tolerance
return state
def _minimize_trustregion_constr(fun, x0, args, grad,
hess, hessp, bounds, constraints,
xtol=1e-8, gtol=1e-8,
barrier_tol=1e-8,
sparse_jacobian=None,
callback=None, maxiter=1000,
verbose=0, finite_diff_rel_step=None,
initial_constr_penalty=1.0, initial_tr_radius=1.0,
initial_barrier_parameter=0.1,
initial_barrier_tolerance=0.1,
factorization_method=None,
disp=False):
"""Minimize a scalar function subject to constraints.
Parameters
----------
gtol : float, optional
Tolerance for termination by the norm of the Lagrangian gradient.
The algorithm will terminate when both the infinity norm (i.e. max
abs value) of the Lagrangian gradient and the constraint violation
are smaller than ``gtol``. Default is 1e-8.
xtol : float, optional
Tolerance for termination by the change of the independent variable.
The algorithm will terminate when ``tr_radius < xtol``, where
``tr_radius`` is the radius of the trust region used in the algorithm.
Default is 1e-8.
barrier_tol : float, optional
Threshold on the barrier parameter for the algorithm termination.
When inequality constraints are present the algorithm will terminate
only when the barrier parameter is less than `barrier_tol`.
Default is 1e-8.
sparse_jacobian : {bool, None}, optional
Determines how to represent Jacobians of the constraints. If bool,
then Jacobians of all the constraints will be converted to the
corresponding format. If None (default), then Jacobians won't be
converted, but the algorithm can proceed only if they all have the
same format.
initial_tr_radius: float, optional
Initial trust radius. The trust radius gives the maximum distance
between solution points in consecutive iterations. It reflects the
trust the algorithm puts in the local approximation of the optimization
problem. For an accurate local approximation the trust-region should be
large and for an approximation valid only close to the current point it
should be a small one. The trust radius is automatically updated throughout
the optimization process, with ``initial_tr_radius`` being its initial value.
Default is 1 (recommended in [1]_, p. 19).
initial_constr_penalty : float, optional
Initial constraints penalty parameter. The penalty parameter is used for
balancing the requirements of decreasing the objective function
and satisfying the constraints. It is used for defining the merit function:
``merit_function(x) = fun(x) + constr_penalty * constr_norm_l2(x)``,
where ``constr_norm_l2(x)`` is the l2 norm of a vector containing all
the constraints. The merit function is used for accepting or rejecting
trial points and ``constr_penalty`` weights the two conflicting goals
of reducing objective function and constraints. The penalty is automatically
updated throughout the optimization process, with
``initial_constr_penalty`` being its initial value. Default is 1
(recommended in [1]_, p 19).
initial_barrier_parameter, initial_barrier_tolerance: float, optional
Initial barrier parameter and initial tolerance for the barrier subproblem.
Both are used only when inequality constraints are present. For dealing with
optimization problems ``min_x f(x)`` subject to inequality constraints
``c(x) <= 0`` the algorithm introduces slack variables, solving the problem
``min_(x,s) f(x) + barrier_parameter*sum(ln(s))`` subject to the equality
constraints ``c(x) + s = 0`` instead of the original problem. This subproblem
is solved for increasing values of ``barrier_parameter`` and with decreasing
tolerances for the termination, starting with ``initial_barrier_parameter``
for the barrier parameter and ``initial_barrier_tolerance`` for the
barrier subproblem barrier. Default is 0.1 for both values (recommended in [1]_ p. 19).
factorization_method : string or None, optional
Method to factorize the Jacobian of the constraints. Use None (default)
for the auto selection or one of:
- 'NormalEquation' (requires scikit-sparse)
- 'AugmentedSystem'
- 'QRFactorization'
- 'SVDFactorization'
The methods 'NormalEquation' and 'AugmentedSystem' can be used only
with sparse constraints. The projections required by the algorithm
will be computed using, respectively, the the normal equation and the
augmented system approaches explained in [1]_. 'NormalEquation'
computes the Cholesky factorization of ``A A.T`` and 'AugmentedSystem'
performs the LU factorization of an augmented system. They usually
provide similar results. 'AugmentedSystem' is used by default for
sparse matrices.
The methods 'QRFactorization' and 'SVDFactorization' can be used
only with dense constraints. They compute the required projections
using, respectively, QR and SVD factorizations. The 'SVDFactorization'
method can cope with Jacobian matrices with deficient row rank and will
be used whenever other factorization methods fail (which may imply the
conversion of sparse matrices to a dense format when required).
By default 'QRFactorization' is used for dense matrices.
finite_diff_rel_step : None or array_like, optional
Relative step size for the finite difference approximation.
maxiter : int, optional
Maximum number of algorithm iterations. Default is 1000.
verbose : {0, 1, 2}, optional
Level of algorithm's verbosity:
* 0 (default) : work silently.
* 1 : display a termination report.
* 2 : display progress during iterations.
* 3 : display progress during iterations (more complete report).
disp : bool, optional
If True (default) then `verbose` will be set to 1 if it was 0.
Returns
-------
`OptimizeResult` with the fields documented below. Note the following:
1. All values corresponding to the constraints are ordered as they
were passed to the solver. And values corresponding to `bounds`
constraints are put *after* other constraints.
2. All numbers of function, Jacobian or Hessian evaluations correspond
to numbers of actual Python function calls. It means, for example,
that if a Jacobian is estimated by finite differences then the
number of Jacobian evaluations will be zero and the number of
function evaluations will be incremented by all calls during the
finite difference estimation.
x : ndarray, shape (n,)
Solution found.
optimality : float
Infinity norm of the Lagrangian gradient at the solution.
constr_violation : float
Maximum constraint violation at the solution.
fun : float
Objective function at the solution.
grad : ndarray, shape (n,)
Gradient of the objective function at the solution.
lagrangian_grad : ndarray, shape (n,)
Gradient of the Lagrangian function at the solution.
niter : int
Total number of iterations.
nfev : integer
Number of the objective function evaluations.
ngev : integer
Number of the objective function gradient evaluations.
nhev : integer
Number of the objective function Hessian evaluations.
cg_niter : int
Total number of the conjugate gradient method iterations.
method : {'equality_constrained_sqp', 'tr_interior_point'}
Optimization method used.
constr : list of ndarray
List of constraint values at the solution.
jac : list of {ndarray, sparse matrix}
List of the Jacobian matrices of the constraints at the solution.
v : list of ndarray
List of the Lagrange multipliers for the constraints at the solution.
For an inequality constraint a positive multiplier means that the upper
bound is active, a negative multiplier means that the lower bound is
active and if a multiplier is zero it means the constraint is not
active.
constr_nfev : list of int
Number of constraint evaluations for each of the constraints.
constr_njev : list of int
Number of Jacobian matrix evaluations for each of the constraints.
constr_nhev : list of int
Number of Hessian evaluations for each of the constraints.
tr_radius : float
Radius of the trust region at the last iteration.
constr_penalty : float
Penalty parameter at the last iteration, see `initial_constr_penalty`.
barrier_tolerance : float
Tolerance for the barrier subproblem at the last iteration.
Only for problems with inequality constraints.
barrier_parameter : float
Barrier parameter at the last iteration. Only for problems
with inequality constraints.
execution_time : float
Total execution time.
message : str
Termination message.
status : {0, 1, 2, 3}
Termination status:
* 0 : The maximum number of function evaluations is exceeded.
* 1 : `gtol` termination condition is satisfied.
* 2 : `xtol` termination condition is satisfied.
* 3 : `callback` function requested termination.
cg_stop_cond : int
Reason for CG subproblem termination at the last iteration:
* 0 : CG subproblem not evaluated.
* 1 : Iteration limit was reached.
* 2 : Reached the trust-region boundary.
* 3 : Negative curvature detected.
* 4 : Tolerance was satisfied.
"""
x0 = np.atleast_1d(x0).astype(float)
n_vars = np.size(x0)
if callable(hessp) and hess is None:
hess = HessianLinearOperator(hessp, n_vars)
if disp and verbose == 0:
verbose = 1
if bounds is not None:
finite_diff_bounds = strict_bounds(bounds.lb, bounds.ub,
bounds.keep_feasible, n_vars)
else:
finite_diff_bounds = (-np.inf, np.inf)
# Define Objective Funciton
objective = ScalarFunction(fun, x0, args, grad, hess,
finite_diff_rel_step, finite_diff_bounds)
# Put constraints in list format when needed
if isinstance(constraints, (NonlinearConstraint, LinearConstraint)):
constraints = [constraints]
# Prepare constraints.
prepared_constraints = [
PreparedConstraint(c, x0, sparse_jacobian, finite_diff_bounds)
for c in constraints]
# Check that all constraints are either sparse or dense.
n_sparse = sum(c.fun.sparse_jacobian for c in prepared_constraints)
if 0 < n_sparse < len(prepared_constraints):
raise ValueError("All constraints must have the same kind of the "
"Jacobian --- either all sparse or all dense. "
"You can set the sparsity globally by setting "
"`sparse_jacobian` to either True of False.")
if prepared_constraints:
sparse_jacobian = n_sparse > 0
if bounds is not None:
prepared_constraints.append(PreparedConstraint(bounds, x0,
sparse_jacobian))
# Concatenate initial constraints to the canonical form.
c_eq0, c_ineq0, J_eq0, J_ineq0 = initial_constraints_as_canonical(
n_vars, prepared_constraints, sparse_jacobian)
# Prepare all canonical constraints and concatenate it into one.
canonical_all = [CanonicalConstraint.from_PreparedConstraint(c)
for c in prepared_constraints]
if len(canonical_all) == 0:
canonical = CanonicalConstraint.empty(n_vars)
elif len(canonical_all) == 1:
canonical = canonical_all[0]
else:
canonical = CanonicalConstraint.concatenate(canonical_all,
sparse_jacobian)
# Generate the Hessian of the Lagrangian.
lagrangian_hess = LagrangianHessian(n_vars, objective.hess, canonical.hess)
# Choose appropriate method
if canonical.n_ineq == 0:
method = 'equality_constrained_sqp'
else:
method = 'tr_interior_point'
# Construct OptimizeResult
state = OptimizeResult(
niter=0, nfev=0, njev=0, nhev=0,
cg_niter=0, cg_stop_cond=0,
fun=objective.f, grad=objective.g,
lagrangian_grad=np.copy(objective.g),
constr=[c.fun.f for c in prepared_constraints],
jac=[c.fun.J for c in prepared_constraints],
constr_nfev=[0 for c in prepared_constraints],
constr_njev=[0 for c in prepared_constraints],
constr_nhev=[0 for c in prepared_constraints],
v=[c.fun.v for c in prepared_constraints],
method=method)
# Start counting
start_time = time.time()
# Define stop criteria
if method == 'equality_constrained_sqp':
def stop_criteria(state, x, last_iteration_failed,
optimality, constr_violation,
tr_radius, constr_penalty, cg_info):
state = update_state_sqp(state, x, last_iteration_failed,
objective, prepared_constraints,
start_time, tr_radius, constr_penalty,
cg_info)
if verbose == 2:
BasicReport.print_iteration(state.niter,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation)
elif verbose > 2:
SQPReport.print_iteration(state.niter,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation,
state.constr_penalty,
state.cg_stop_cond)
state.status = None
if callback is not None and callback(np.copy(state.x), state):
state.status = 3
elif state.optimality < gtol and state.constr_violation < gtol:
state.status = 1
elif state.tr_radius < xtol:
state.status = 2
elif state.niter > maxiter:
state.status = 0
return state.status in (0, 1, 2, 3)
elif method == 'tr_interior_point':
def stop_criteria(state, x, last_iteration_failed, tr_radius,
constr_penalty, cg_info, barrier_parameter,
barrier_tolerance):
state = update_state_ip(state, x, last_iteration_failed,
objective, prepared_constraints,
start_time, tr_radius, constr_penalty,
cg_info, barrier_parameter, barrier_tolerance)
if verbose == 2:
BasicReport.print_iteration(state.niter,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation)
elif verbose > 2:
IPReport.print_iteration(state.niter,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation,
state.constr_penalty,
state.barrier_parameter,
state.cg_stop_cond)
state.status = None
if callback is not None and callback(np.copy(state.x), state):
state.status = 3
elif state.optimality < gtol and state.constr_violation < gtol:
state.status = 1
elif (state.tr_radius < xtol
and state.barrier_parameter < barrier_tol):
state.status = 2
elif state.niter > maxiter:
state.status = 0
return state.status in (0, 1, 2, 3)
if verbose == 2:
BasicReport.print_header()
elif verbose > 2:
if method == 'equality_constrained_sqp':
SQPReport.print_header()
elif method == 'tr_interior_point':
IPReport.print_header()
# Call inferior function to do the optimization
if method == 'equality_constrained_sqp':
def fun_and_constr(x):
f = objective.fun(x)
c_eq, _ = canonical.fun(x)
return f, c_eq
def grad_and_jac(x):
g = objective.grad(x)
J_eq, _ = canonical.jac(x)
return g, J_eq
_, result = equality_constrained_sqp(
fun_and_constr, grad_and_jac, lagrangian_hess,
x0, objective.f, objective.g,
c_eq0, J_eq0,
stop_criteria, state,
initial_constr_penalty, initial_tr_radius,
factorization_method)
elif method == 'tr_interior_point':
_, result = tr_interior_point(
objective.fun, objective.grad, lagrangian_hess,
n_vars, canonical.n_ineq, canonical.n_eq,
canonical.fun, canonical.jac,
x0, objective.f, objective.g,
c_ineq0, J_ineq0, c_eq0, J_eq0,
stop_criteria,
canonical.keep_feasible,
xtol, state, initial_barrier_parameter,
initial_barrier_tolerance,
initial_constr_penalty, initial_tr_radius,
factorization_method)
result.message = TERMINATION_MESSAGES[result.status]
if verbose == 2:
BasicReport.print_footer()
elif verbose > 2:
if method == 'equality_constrained_sqp':
SQPReport.print_footer()
elif method == 'tr_interior_point':
IPReport.print_footer()
if verbose >= 1:
print(result.message)
print("Number of iterations: {}, function evaluations: {}, "
"CG iterations: {}, optimality: {:.2e}, "
"constraint violation: {:.2e}, execution time: {:4.2} s."
.format(result.niter, result.nfev, result.cg_niter,
result.optimality, result.constr_violation,
result.execution_time))
return result
|