1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
"""Equality-constrained quadratic programming solvers."""
from __future__ import division, print_function, absolute_import
from scipy.sparse import (linalg, bmat, csc_matrix)
from math import copysign
import numpy as np
from numpy.linalg import norm
__all__ = [
'eqp_kktfact',
'sphere_intersections',
'box_intersections',
'box_sphere_intersections',
'inside_box_boundaries',
'modified_dogleg',
'projected_cg'
]
# For comparison with the projected CG
def eqp_kktfact(H, c, A, b):
"""Solve equality-constrained quadratic programming (EQP) problem.
Solve ``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0``
using direct factorization of the KKT system.
Parameters
----------
H : sparse matrix, shape (n, n)
Hessian matrix of the EQP problem.
c : array_like, shape (n,)
Gradient of the quadratic objective function.
A : sparse matrix
Jacobian matrix of the EQP problem.
b : array_like, shape (m,)
Right-hand side of the constraint equation.
Returns
-------
x : array_like, shape (n,)
Solution of the KKT problem.
lagrange_multipliers : ndarray, shape (m,)
Lagrange multipliers of the KKT problem.
"""
n, = np.shape(c) # Number of parameters
m, = np.shape(b) # Number of constraints
# Karush-Kuhn-Tucker matrix of coefficients.
# Defined as in Nocedal/Wright "Numerical
# Optimization" p.452 in Eq. (16.4).
kkt_matrix = csc_matrix(bmat([[H, A.T], [A, None]]))
# Vector of coefficients.
kkt_vec = np.hstack([-c, -b])
# TODO: Use a symmetric indefinite factorization
# to solve the system twice as fast (because
# of the symmetry).
lu = linalg.splu(kkt_matrix)
kkt_sol = lu.solve(kkt_vec)
x = kkt_sol[:n]
lagrange_multipliers = -kkt_sol[n:n+m]
return x, lagrange_multipliers
def sphere_intersections(z, d, trust_radius,
entire_line=False):
"""Find the intersection between segment (or line) and spherical constraints.
Find the intersection between the segment (or line) defined by the
parametric equation ``x(t) = z + t*d`` and the ball
``||x|| <= trust_radius``.
Parameters
----------
z : array_like, shape (n,)
Initial point.
d : array_like, shape (n,)
Direction.
trust_radius : float
Ball radius.
entire_line : bool, optional
When ``True`` the function returns the intersection between the line
``x(t) = z + t*d`` (``t`` can assume any value) and the ball
``||x|| <= trust_radius``. When ``False`` returns the intersection
between the segment ``x(t) = z + t*d``, ``0 <= t <= 1``, and the ball.
Returns
-------
ta, tb : float
The line/segment ``x(t) = z + t*d`` is inside the ball for
for ``ta <= t <= tb``.
intersect : bool
When ``True`` there is a intersection between the line/segment
and the sphere. On the other hand, when ``False``, there is no
intersection.
"""
# Special case when d=0
if norm(d) == 0:
return 0, 0, False
# Check for inf trust_radius
if np.isinf(trust_radius):
if entire_line:
ta = -np.inf
tb = np.inf
else:
ta = 0
tb = 1
intersect = True
return ta, tb, intersect
a = np.dot(d, d)
b = 2 * np.dot(z, d)
c = np.dot(z, z) - trust_radius**2
discriminant = b*b - 4*a*c
if discriminant < 0:
intersect = False
return 0, 0, intersect
sqrt_discriminant = np.sqrt(discriminant)
# The following calculation is mathematically
# equivalent to:
# ta = (-b - sqrt_discriminant) / (2*a)
# tb = (-b + sqrt_discriminant) / (2*a)
# but produce smaller round off errors.
# Look at Matrix Computation p.97
# for a better justification.
aux = b + copysign(sqrt_discriminant, b)
ta = -aux / (2*a)
tb = -2*c / aux
ta, tb = sorted([ta, tb])
if entire_line:
intersect = True
else:
# Checks to see if intersection happens
# within vectors length.
if tb < 0 or ta > 1:
intersect = False
ta = 0
tb = 0
else:
intersect = True
# Restrict intersection interval
# between 0 and 1.
ta = max(0, ta)
tb = min(1, tb)
return ta, tb, intersect
def box_intersections(z, d, lb, ub,
entire_line=False):
"""Find the intersection between segment (or line) and box constraints.
Find the intersection between the segment (or line) defined by the
parametric equation ``x(t) = z + t*d`` and the rectangular box
``lb <= x <= ub``.
Parameters
----------
z : array_like, shape (n,)
Initial point.
d : array_like, shape (n,)
Direction.
lb : array_like, shape (n,)
Lower bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
ub : array_like, shape (n, )
Upper bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
entire_line : bool, optional
When ``True`` the function returns the intersection between the line
``x(t) = z + t*d`` (``t`` can assume any value) and the rectangular
box. When ``False`` returns the intersection between the segment
``x(t) = z + t*d``, ``0 <= t <= 1``, and the rectangular box.
Returns
-------
ta, tb : float
The line/segment ``x(t) = z + t*d`` is inside the box for
for ``ta <= t <= tb``.
intersect : bool
When ``True`` there is a intersection between the line (or segment)
and the rectangular box. On the other hand, when ``False``, there is no
intersection.
"""
# Make sure it is a numpy array
z = np.asarray(z)
d = np.asarray(d)
lb = np.asarray(lb)
ub = np.asarray(ub)
# Special case when d=0
if norm(d) == 0:
return 0, 0, False
# Get values for which d==0
zero_d = (d == 0)
# If the boundaries are not satisfied for some coordinate
# for which "d" is zero, there is no box-line intersection.
if (z[zero_d] < lb[zero_d]).any() or (z[zero_d] > ub[zero_d]).any():
intersect = False
return 0, 0, intersect
# Remove values for which d is zero
not_zero_d = np.logical_not(zero_d)
z = z[not_zero_d]
d = d[not_zero_d]
lb = lb[not_zero_d]
ub = ub[not_zero_d]
# Find a series of intervals (t_lb[i], t_ub[i]).
t_lb = (lb-z) / d
t_ub = (ub-z) / d
# Get the intersection of all those intervals.
ta = max(np.minimum(t_lb, t_ub))
tb = min(np.maximum(t_lb, t_ub))
# Check if intersection is feasible
if ta <= tb:
intersect = True
else:
intersect = False
# Checks to see if intersection happens within vectors length.
if not entire_line:
if tb < 0 or ta > 1:
intersect = False
ta = 0
tb = 0
else:
# Restrict intersection interval between 0 and 1.
ta = max(0, ta)
tb = min(1, tb)
return ta, tb, intersect
def box_sphere_intersections(z, d, lb, ub, trust_radius,
entire_line=False,
extra_info=False):
"""Find the intersection between segment (or line) and box/sphere constraints.
Find the intersection between the segment (or line) defined by the
parametric equation ``x(t) = z + t*d``, the rectangular box
``lb <= x <= ub`` and the ball ``||x|| <= trust_radius``.
Parameters
----------
z : array_like, shape (n,)
Initial point.
d : array_like, shape (n,)
Direction.
lb : array_like, shape (n,)
Lower bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
ub : array_like, shape (n, )
Upper bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
trust_radius : float
Ball radius.
entire_line : bool, optional
When ``True`` the function returns the intersection between the line
``x(t) = z + t*d`` (``t`` can assume any value) and the constraints.
When ``False`` returns the intersection between the segment
``x(t) = z + t*d``, ``0 <= t <= 1`` and the constraints.
extra_info : bool, optional
When ``True`` returns ``intersect_sphere`` and ``intersect_box``.
Returns
-------
ta, tb : float
The line/segment ``x(t) = z + t*d`` is inside the rectangular box and
inside the ball for for ``ta <= t <= tb``.
intersect : bool
When ``True`` there is a intersection between the line (or segment)
and both constraints. On the other hand, when ``False``, there is no
intersection.
sphere_info : dict, optional
Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
for which the line intercept the ball. And a boolean value indicating
whether the sphere is intersected by the line.
box_info : dict, optional
Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
for which the line intercept the box. And a boolean value indicating
whether the box is intersected by the line.
"""
ta_b, tb_b, intersect_b = box_intersections(z, d, lb, ub,
entire_line)
ta_s, tb_s, intersect_s = sphere_intersections(z, d,
trust_radius,
entire_line)
ta = np.maximum(ta_b, ta_s)
tb = np.minimum(tb_b, tb_s)
if intersect_b and intersect_s and ta <= tb:
intersect = True
else:
intersect = False
if extra_info:
sphere_info = {'ta': ta_s, 'tb': tb_s, 'intersect': intersect_s}
box_info = {'ta': ta_b, 'tb': tb_b, 'intersect': intersect_b}
return ta, tb, intersect, sphere_info, box_info
else:
return ta, tb, intersect
def inside_box_boundaries(x, lb, ub):
"""Check if lb <= x <= ub."""
return (lb <= x).all() and (x <= ub).all()
def reinforce_box_boundaries(x, lb, ub):
"""Return clipped value of x"""
return np.minimum(np.maximum(x, lb), ub)
def modified_dogleg(A, Y, b, trust_radius, lb, ub):
"""Approximately minimize ``1/2*|| A x + b ||^2`` inside trust-region.
Approximately solve the problem of minimizing ``1/2*|| A x + b ||^2``
subject to ``||x|| < Delta`` and ``lb <= x <= ub`` using a modification
of the classical dogleg approach.
Parameters
----------
A : LinearOperator (or sparse matrix or ndarray), shape (m, n)
Matrix ``A`` in the minimization problem. It should have
dimension ``(m, n)`` such that ``m < n``.
Y : LinearOperator (or sparse matrix or ndarray), shape (n, m)
LinearOperator that apply the projection matrix
``Q = A.T inv(A A.T)`` to the vector. The obtained vector
``y = Q x`` being the minimum norm solution of ``A y = x``.
b : array_like, shape (m,)
Vector ``b``in the minimization problem.
trust_radius: float
Trust radius to be considered. Delimits a sphere boundary
to the problem.
lb : array_like, shape (n,)
Lower bounds to each one of the components of ``x``.
It is expected that ``lb <= 0``, otherwise the algorithm
may fail. If ``lb[i] = -Inf`` the lower
bound for the i-th component is just ignored.
ub : array_like, shape (n, )
Upper bounds to each one of the components of ``x``.
It is expected that ``ub >= 0``, otherwise the algorithm
may fail. If ``ub[i] = Inf`` the upper bound for the i-th
component is just ignored.
Returns
-------
x : array_like, shape (n,)
Solution to the problem.
Notes
-----
Based on implementations described in p.p. 885-886 from [1]_.
References
----------
.. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
"An interior point algorithm for large-scale nonlinear
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
"""
# Compute minimum norm minimizer of 1/2*|| A x + b ||^2.
newton_point = -Y.dot(b)
# Check for interior point
if inside_box_boundaries(newton_point, lb, ub) \
and norm(newton_point) <= trust_radius:
x = newton_point
return x
# Compute gradient vector ``g = A.T b``
g = A.T.dot(b)
# Compute cauchy point
# `cauchy_point = g.T g / (g.T A.T A g)``.
A_g = A.dot(g)
cauchy_point = -np.dot(g, g) / np.dot(A_g, A_g) * g
# Origin
origin_point = np.zeros_like(cauchy_point)
# Check the segment between cauchy_point and newton_point
# for a possible solution.
z = cauchy_point
p = newton_point - cauchy_point
_, alpha, intersect = box_sphere_intersections(z, p, lb, ub,
trust_radius)
if intersect:
x1 = z + alpha*p
else:
# Check the segment between the origin and cauchy_point
# for a possible solution.
z = origin_point
p = cauchy_point
_, alpha, _ = box_sphere_intersections(z, p, lb, ub,
trust_radius)
x1 = z + alpha*p
# Check the segment between origin and newton_point
# for a possible solution.
z = origin_point
p = newton_point
_, alpha, _ = box_sphere_intersections(z, p, lb, ub,
trust_radius)
x2 = z + alpha*p
# Return the best solution among x1 and x2.
if norm(A.dot(x1) + b) < norm(A.dot(x2) + b):
return x1
else:
return x2
def projected_cg(H, c, Z, Y, b, trust_radius=np.inf,
lb=None, ub=None, tol=None,
max_iter=None, max_infeasible_iter=None,
return_all=False):
"""Solve EQP problem with projected CG method.
Solve equality-constrained quadratic programming problem
``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0`` and,
possibly, to trust region constraints ``||x|| < trust_radius``
and box constraints ``lb <= x <= ub``.
Parameters
----------
H : LinearOperator (or sparse matrix or ndarray), shape (n, n)
Operator for computing ``H v``.
c : array_like, shape (n,)
Gradient of the quadratic objective function.
Z : LinearOperator (or sparse matrix or ndarray), shape (n, n)
Operator for projecting ``x`` into the null space of A.
Y : LinearOperator, sparse matrix, ndarray, shape (n, m)
Operator that, for a given a vector ``b``, compute smallest
norm solution of ``A x + b = 0``.
b : array_like, shape (m,)
Right-hand side of the constraint equation.
trust_radius : float, optional
Trust radius to be considered. By default uses ``trust_radius=inf``,
which means no trust radius at all.
lb : array_like, shape (n,), optional
Lower bounds to each one of the components of ``x``.
If ``lb[i] = -Inf`` the lower bound for the i-th
component is just ignored (default).
ub : array_like, shape (n, ), optional
Upper bounds to each one of the components of ``x``.
If ``ub[i] = Inf`` the upper bound for the i-th
component is just ignored (default).
tol : float, optional
Tolerance used to interrupt the algorithm.
max_iter : int, optional
Maximum algorithm iterations. Where ``max_inter <= n-m``.
By default uses ``max_iter = n-m``.
max_infeasible_iter : int, optional
Maximum infeasible (regarding box constraints) iterations the
algorithm is allowed to take.
By default uses ``max_infeasible_iter = n-m``.
return_all : bool, optional
When ``true`` return the list of all vectors through the iterations.
Returns
-------
x : array_like, shape (n,)
Solution of the EQP problem.
info : Dict
Dictionary containing the following:
- niter : Number of iterations.
- stop_cond : Reason for algorithm termination:
1. Iteration limit was reached;
2. Reached the trust-region boundary;
3. Negative curvature detected;
4. Tolerance was satisfied.
- allvecs : List containing all intermediary vectors (optional).
- hits_boundary : True if the proposed step is on the boundary
of the trust region.
Notes
-----
Implementation of Algorithm 6.2 on [1]_.
In the absence of spherical and box constraints, for sufficient
iterations, the method returns a truly optimal result.
In the presence of those constraints the value returned is only
a inexpensive approximation of the optimal value.
References
----------
.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
"On the solution of equality constrained quadratic
programming problems arising in optimization."
SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
"""
CLOSE_TO_ZERO = 1e-25
n, = np.shape(c) # Number of parameters
m, = np.shape(b) # Number of constraints
# Initial Values
x = Y.dot(-b)
r = Z.dot(H.dot(x) + c)
g = Z.dot(r)
p = -g
# Store ``x`` value
if return_all:
allvecs = [x]
# Values for the first iteration
H_p = H.dot(p)
rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)
# If x > trust-region the problem does not have a solution.
tr_distance = trust_radius - norm(x)
if tr_distance < 0:
raise ValueError("Trust region problem does not have a solution.")
# If x == trust_radius, then x is the solution
# to the optimization problem, since x is the
# minimum norm solution to Ax=b.
elif tr_distance < CLOSE_TO_ZERO:
info = {'niter': 0, 'stop_cond': 2, 'hits_boundary': True}
if return_all:
allvecs.append(x)
info['allvecs'] = allvecs
return x, info
# Set default tolerance
if tol is None:
tol = max(min(0.01 * np.sqrt(rt_g), 0.1 * rt_g), CLOSE_TO_ZERO)
# Set default lower and upper bounds
if lb is None:
lb = np.full(n, -np.inf)
if ub is None:
ub = np.full(n, np.inf)
# Set maximum iterations
if max_iter is None:
max_iter = n-m
max_iter = min(max_iter, n-m)
# Set maximum infeasible iterations
if max_infeasible_iter is None:
max_infeasible_iter = n-m
hits_boundary = False
stop_cond = 1
counter = 0
last_feasible_x = np.zeros_like(x)
k = 0
for i in range(max_iter):
# Stop criteria - Tolerance : r.T g < tol
if rt_g < tol:
stop_cond = 4
break
k += 1
# Compute curvature
pt_H_p = H_p.dot(p)
# Stop criteria - Negative curvature
if pt_H_p <= 0:
if np.isinf(trust_radius):
raise ValueError("Negative curvature not "
"allowed for unrestrited "
"problems.")
else:
# Find intersection with constraints
_, alpha, intersect = box_sphere_intersections(
x, p, lb, ub, trust_radius, entire_line=True)
# Update solution
if intersect:
x = x + alpha*p
# Reinforce variables are inside box constraints.
# This is only necessary because of roundoff errors.
x = reinforce_box_boundaries(x, lb, ub)
# Atribute information
stop_cond = 3
hits_boundary = True
break
# Get next step
alpha = rt_g / pt_H_p
x_next = x + alpha*p
# Stop criteria - Hits boundary
if np.linalg.norm(x_next) >= trust_radius:
# Find intersection with box constraints
_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
trust_radius)
# Update solution
if intersect:
x = x + theta*alpha*p
# Reinforce variables are inside box constraints.
# This is only necessary because of roundoff errors.
x = reinforce_box_boundaries(x, lb, ub)
# Atribute information
stop_cond = 2
hits_boundary = True
break
# Check if ``x`` is inside the box and start counter if it is not.
if inside_box_boundaries(x_next, lb, ub):
counter = 0
else:
counter += 1
# Whenever outside box constraints keep looking for intersections.
if counter > 0:
_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
trust_radius)
if intersect:
last_feasible_x = x + theta*alpha*p
# Reinforce variables are inside box constraints.
# This is only necessary because of roundoff errors.
last_feasible_x = reinforce_box_boundaries(last_feasible_x,
lb, ub)
counter = 0
# Stop after too many infeasible (regarding box constraints) iteration.
if counter > max_infeasible_iter:
break
# Store ``x_next`` value
if return_all:
allvecs.append(x_next)
# Update residual
r_next = r + alpha*H_p
# Project residual g+ = Z r+
g_next = Z.dot(r_next)
# Compute conjugate direction step d
rt_g_next = norm(g_next)**2 # g.T g = r.T g (ref [1]_ p.1389)
beta = rt_g_next / rt_g
p = - g_next + beta*p
# Prepare for next iteration
x = x_next
g = g_next
r = g_next
rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)
H_p = H.dot(p)
if not inside_box_boundaries(x, lb, ub):
x = last_feasible_x
hits_boundary = True
info = {'niter': k, 'stop_cond': stop_cond,
'hits_boundary': hits_boundary}
if return_all:
info['allvecs'] = allvecs
return x, info
|