File: qp_subproblem.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (639 lines) | stat: -rw-r--r-- 22,641 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
"""Equality-constrained quadratic programming solvers."""

from __future__ import division, print_function, absolute_import
from scipy.sparse import (linalg, bmat, csc_matrix)
from math import copysign
import numpy as np
from numpy.linalg import norm

__all__ = [
    'eqp_kktfact',
    'sphere_intersections',
    'box_intersections',
    'box_sphere_intersections',
    'inside_box_boundaries',
    'modified_dogleg',
    'projected_cg'
]


# For comparison with the projected CG
def eqp_kktfact(H, c, A, b):
    """Solve equality-constrained quadratic programming (EQP) problem.

    Solve ``min 1/2 x.T H x + x.t c``  subject to ``A x + b = 0``
    using direct factorization of the KKT system.

    Parameters
    ----------
    H : sparse matrix, shape (n, n)
        Hessian matrix of the EQP problem.
    c : array_like, shape (n,)
        Gradient of the quadratic objective function.
    A : sparse matrix
        Jacobian matrix of the EQP problem.
    b : array_like, shape (m,)
        Right-hand side of the constraint equation.

    Returns
    -------
    x : array_like, shape (n,)
        Solution of the KKT problem.
    lagrange_multipliers : ndarray, shape (m,)
        Lagrange multipliers of the KKT problem.
    """
    n, = np.shape(c)  # Number of parameters
    m, = np.shape(b)  # Number of constraints

    # Karush-Kuhn-Tucker matrix of coefficients.
    # Defined as in Nocedal/Wright "Numerical
    # Optimization" p.452 in Eq. (16.4).
    kkt_matrix = csc_matrix(bmat([[H, A.T], [A, None]]))
    # Vector of coefficients.
    kkt_vec = np.hstack([-c, -b])

    # TODO: Use a symmetric indefinite factorization
    #       to solve the system twice as fast (because
    #       of the symmetry).
    lu = linalg.splu(kkt_matrix)
    kkt_sol = lu.solve(kkt_vec)
    x = kkt_sol[:n]
    lagrange_multipliers = -kkt_sol[n:n+m]

    return x, lagrange_multipliers


def sphere_intersections(z, d, trust_radius,
                         entire_line=False):
    """Find the intersection between segment (or line) and spherical constraints.

    Find the intersection between the segment (or line) defined by the
    parametric  equation ``x(t) = z + t*d`` and the ball
    ``||x|| <= trust_radius``.

    Parameters
    ----------
    z : array_like, shape (n,)
        Initial point.
    d : array_like, shape (n,)
        Direction.
    trust_radius : float
        Ball radius.
    entire_line : bool, optional
        When ``True`` the function returns the intersection between the line
        ``x(t) = z + t*d`` (``t`` can assume any value) and the ball
        ``||x|| <= trust_radius``. When ``False`` returns the intersection
        between the segment ``x(t) = z + t*d``, ``0 <= t <= 1``, and the ball.

    Returns
    -------
    ta, tb : float
        The line/segment ``x(t) = z + t*d`` is inside the ball for
        for ``ta <= t <= tb``.
    intersect : bool
        When ``True`` there is a intersection between the line/segment
        and the sphere. On the other hand, when ``False``, there is no
        intersection.
    """
    # Special case when d=0
    if norm(d) == 0:
        return 0, 0, False
    # Check for inf trust_radius
    if np.isinf(trust_radius):
        if entire_line:
            ta = -np.inf
            tb = np.inf
        else:
            ta = 0
            tb = 1
        intersect = True
        return ta, tb, intersect

    a = np.dot(d, d)
    b = 2 * np.dot(z, d)
    c = np.dot(z, z) - trust_radius**2
    discriminant = b*b - 4*a*c
    if discriminant < 0:
        intersect = False
        return 0, 0, intersect
    sqrt_discriminant = np.sqrt(discriminant)

    # The following calculation is mathematically
    # equivalent to:
    # ta = (-b - sqrt_discriminant) / (2*a)
    # tb = (-b + sqrt_discriminant) / (2*a)
    # but produce smaller round off errors.
    # Look at Matrix Computation p.97
    # for a better justification.
    aux = b + copysign(sqrt_discriminant, b)
    ta = -aux / (2*a)
    tb = -2*c / aux
    ta, tb = sorted([ta, tb])

    if entire_line:
        intersect = True
    else:
        # Checks to see if intersection happens
        # within vectors length.
        if tb < 0 or ta > 1:
            intersect = False
            ta = 0
            tb = 0
        else:
            intersect = True
            # Restrict intersection interval
            # between 0 and 1.
            ta = max(0, ta)
            tb = min(1, tb)

    return ta, tb, intersect


def box_intersections(z, d, lb, ub,
                      entire_line=False):
    """Find the intersection between segment (or line) and box constraints.

    Find the intersection between the segment (or line) defined by the
    parametric  equation ``x(t) = z + t*d`` and the rectangular box
    ``lb <= x <= ub``.

    Parameters
    ----------
    z : array_like, shape (n,)
        Initial point.
    d : array_like, shape (n,)
        Direction.
    lb : array_like, shape (n,)
        Lower bounds to each one of the components of ``x``. Used
        to delimit the rectangular box.
    ub : array_like, shape (n, )
        Upper bounds to each one of the components of ``x``. Used
        to delimit the rectangular box.
    entire_line : bool, optional
        When ``True`` the function returns the intersection between the line
        ``x(t) = z + t*d`` (``t`` can assume any value) and the rectangular
        box. When ``False`` returns the intersection between the segment
        ``x(t) = z + t*d``, ``0 <= t <= 1``, and the rectangular box.

    Returns
    -------
    ta, tb : float
        The line/segment ``x(t) = z + t*d`` is inside the box for
        for ``ta <= t <= tb``.
    intersect : bool
        When ``True`` there is a intersection between the line (or segment)
        and the rectangular box. On the other hand, when ``False``, there is no
        intersection.
    """
    # Make sure it is a numpy array
    z = np.asarray(z)
    d = np.asarray(d)
    lb = np.asarray(lb)
    ub = np.asarray(ub)
    # Special case when d=0
    if norm(d) == 0:
        return 0, 0, False

    # Get values for which d==0
    zero_d = (d == 0)
    # If the boundaries are not satisfied for some coordinate
    # for which "d" is zero, there is no box-line intersection.
    if (z[zero_d] < lb[zero_d]).any() or (z[zero_d] > ub[zero_d]).any():
        intersect = False
        return 0, 0, intersect
    # Remove values for which d is zero
    not_zero_d = np.logical_not(zero_d)
    z = z[not_zero_d]
    d = d[not_zero_d]
    lb = lb[not_zero_d]
    ub = ub[not_zero_d]

    # Find a series of intervals (t_lb[i], t_ub[i]).
    t_lb = (lb-z) / d
    t_ub = (ub-z) / d
    # Get the intersection of all those intervals.
    ta = max(np.minimum(t_lb, t_ub))
    tb = min(np.maximum(t_lb, t_ub))

    # Check if intersection is feasible
    if ta <= tb:
        intersect = True
    else:
        intersect = False
    # Checks to see if intersection happens within vectors length.
    if not entire_line:
        if tb < 0 or ta > 1:
            intersect = False
            ta = 0
            tb = 0
        else:
            # Restrict intersection interval between 0 and 1.
            ta = max(0, ta)
            tb = min(1, tb)

    return ta, tb, intersect


def box_sphere_intersections(z, d, lb, ub, trust_radius,
                             entire_line=False,
                             extra_info=False):
    """Find the intersection between segment (or line) and box/sphere constraints.

    Find the intersection between the segment (or line) defined by the
    parametric  equation ``x(t) = z + t*d``,  the rectangular box
    ``lb <= x <= ub`` and the ball ``||x|| <= trust_radius``.

    Parameters
    ----------
    z : array_like, shape (n,)
        Initial point.
    d : array_like, shape (n,)
        Direction.
    lb : array_like, shape (n,)
        Lower bounds to each one of the components of ``x``. Used
        to delimit the rectangular box.
    ub : array_like, shape (n, )
        Upper bounds to each one of the components of ``x``. Used
        to delimit the rectangular box.
    trust_radius : float
        Ball radius.
    entire_line : bool, optional
        When ``True`` the function returns the intersection between the line
        ``x(t) = z + t*d`` (``t`` can assume any value) and the constraints.
        When ``False`` returns the intersection between the segment
        ``x(t) = z + t*d``, ``0 <= t <= 1`` and the constraints.
    extra_info : bool, optional
        When ``True`` returns ``intersect_sphere`` and ``intersect_box``.

    Returns
    -------
    ta, tb : float
        The line/segment ``x(t) = z + t*d`` is inside the rectangular box and
        inside the ball for for ``ta <= t <= tb``.
    intersect : bool
        When ``True`` there is a intersection between the line (or segment)
        and both constraints. On the other hand, when ``False``, there is no
        intersection.
    sphere_info : dict, optional
        Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
        for which the line intercept the ball. And a boolean value indicating
        whether the sphere is intersected by the line.
    box_info : dict, optional
        Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
        for which the line intercept the box. And a boolean value indicating
        whether the box is intersected by the line.
    """
    ta_b, tb_b, intersect_b = box_intersections(z, d, lb, ub,
                                                entire_line)
    ta_s, tb_s, intersect_s = sphere_intersections(z, d,
                                                   trust_radius,
                                                   entire_line)
    ta = np.maximum(ta_b, ta_s)
    tb = np.minimum(tb_b, tb_s)
    if intersect_b and intersect_s and ta <= tb:
        intersect = True
    else:
        intersect = False

    if extra_info:
        sphere_info = {'ta': ta_s, 'tb': tb_s, 'intersect': intersect_s}
        box_info = {'ta': ta_b, 'tb': tb_b, 'intersect': intersect_b}
        return ta, tb, intersect, sphere_info, box_info
    else:
        return ta, tb, intersect


def inside_box_boundaries(x, lb, ub):
    """Check if lb <= x <= ub."""
    return (lb <= x).all() and (x <= ub).all()


def reinforce_box_boundaries(x, lb, ub):
    """Return clipped value of x"""
    return np.minimum(np.maximum(x, lb), ub)


def modified_dogleg(A, Y, b, trust_radius, lb, ub):
    """Approximately  minimize ``1/2*|| A x + b ||^2`` inside trust-region.

    Approximately solve the problem of minimizing ``1/2*|| A x + b ||^2``
    subject to ``||x|| < Delta`` and ``lb <= x <= ub`` using a modification
    of the classical dogleg approach.

    Parameters
    ----------
    A : LinearOperator (or sparse matrix or ndarray), shape (m, n)
        Matrix ``A`` in the minimization problem. It should have
        dimension ``(m, n)`` such that ``m < n``.
    Y : LinearOperator (or sparse matrix or ndarray), shape (n, m)
        LinearOperator that apply the projection matrix
        ``Q = A.T inv(A A.T)`` to the vector.  The obtained vector
        ``y = Q x`` being the minimum norm solution of ``A y = x``.
    b : array_like, shape (m,)
        Vector ``b``in the minimization problem.
    trust_radius: float
        Trust radius to be considered. Delimits a sphere boundary
        to the problem.
    lb : array_like, shape (n,)
        Lower bounds to each one of the components of ``x``.
        It is expected that ``lb <= 0``, otherwise the algorithm
        may fail. If ``lb[i] = -Inf`` the lower
        bound for the i-th component is just ignored.
    ub : array_like, shape (n, )
        Upper bounds to each one of the components of ``x``.
        It is expected that ``ub >= 0``, otherwise the algorithm
        may fail. If ``ub[i] = Inf`` the upper bound for the i-th
        component is just ignored.

    Returns
    -------
    x : array_like, shape (n,)
        Solution to the problem.

    Notes
    -----
    Based on implementations described in p.p. 885-886 from [1]_.

    References
    ----------
    .. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
           "An interior point algorithm for large-scale nonlinear
           programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
    """
    # Compute minimum norm minimizer of 1/2*|| A x + b ||^2.
    newton_point = -Y.dot(b)
    # Check for interior point
    if inside_box_boundaries(newton_point, lb, ub)  \
       and norm(newton_point) <= trust_radius:
        x = newton_point
        return x

    # Compute gradient vector ``g = A.T b``
    g = A.T.dot(b)
    # Compute cauchy point
    # `cauchy_point = g.T g / (g.T A.T A g)``.
    A_g = A.dot(g)
    cauchy_point = -np.dot(g, g) / np.dot(A_g, A_g) * g
    # Origin
    origin_point = np.zeros_like(cauchy_point)

    # Check the segment between cauchy_point and newton_point
    # for a possible solution.
    z = cauchy_point
    p = newton_point - cauchy_point
    _, alpha, intersect = box_sphere_intersections(z, p, lb, ub,
                                                   trust_radius)
    if intersect:
        x1 = z + alpha*p
    else:
        # Check the segment between the origin and cauchy_point
        # for a possible solution.
        z = origin_point
        p = cauchy_point
        _, alpha, _ = box_sphere_intersections(z, p, lb, ub,
                                               trust_radius)
        x1 = z + alpha*p

    # Check the segment between origin and newton_point
    # for a possible solution.
    z = origin_point
    p = newton_point
    _, alpha, _ = box_sphere_intersections(z, p, lb, ub,
                                           trust_radius)
    x2 = z + alpha*p

    # Return the best solution among x1 and x2.
    if norm(A.dot(x1) + b) < norm(A.dot(x2) + b):
        return x1
    else:
        return x2


def projected_cg(H, c, Z, Y, b, trust_radius=np.inf,
                 lb=None, ub=None, tol=None,
                 max_iter=None, max_infeasible_iter=None,
                 return_all=False):
    """Solve EQP problem with projected CG method.

    Solve equality-constrained quadratic programming problem
    ``min 1/2 x.T H x + x.t c``  subject to ``A x + b = 0`` and,
    possibly, to trust region constraints ``||x|| < trust_radius``
    and box constraints ``lb <= x <= ub``.

    Parameters
    ----------
    H : LinearOperator (or sparse matrix or ndarray), shape (n, n)
        Operator for computing ``H v``.
    c : array_like, shape (n,)
        Gradient of the quadratic objective function.
    Z : LinearOperator (or sparse matrix or ndarray), shape (n, n)
        Operator for projecting ``x`` into the null space of A.
    Y : LinearOperator,  sparse matrix, ndarray, shape (n, m)
        Operator that, for a given a vector ``b``, compute smallest
        norm solution of ``A x + b = 0``.
    b : array_like, shape (m,)
        Right-hand side of the constraint equation.
    trust_radius : float, optional
        Trust radius to be considered. By default uses ``trust_radius=inf``,
        which means no trust radius at all.
    lb : array_like, shape (n,), optional
        Lower bounds to each one of the components of ``x``.
        If ``lb[i] = -Inf`` the lower bound for the i-th
        component is just ignored (default).
    ub : array_like, shape (n, ), optional
        Upper bounds to each one of the components of ``x``.
        If ``ub[i] = Inf`` the upper bound for the i-th
        component is just ignored (default).
    tol : float, optional
        Tolerance used to interrupt the algorithm.
    max_iter : int, optional
        Maximum algorithm iterations. Where ``max_inter <= n-m``.
        By default uses ``max_iter = n-m``.
    max_infeasible_iter : int, optional
        Maximum infeasible (regarding box constraints) iterations the
        algorithm is allowed to take.
        By default uses ``max_infeasible_iter = n-m``.
    return_all : bool, optional
        When ``true`` return the list of all vectors through the iterations.

    Returns
    -------
    x : array_like, shape (n,)
        Solution of the EQP problem.
    info : Dict
        Dictionary containing the following:

            - niter : Number of iterations.
            - stop_cond : Reason for algorithm termination:
                1. Iteration limit was reached;
                2. Reached the trust-region boundary;
                3. Negative curvature detected;
                4. Tolerance was satisfied.
            - allvecs : List containing all intermediary vectors (optional).
            - hits_boundary : True if the proposed step is on the boundary
              of the trust region.

    Notes
    -----
    Implementation of Algorithm 6.2 on [1]_.

    In the absence of spherical and box constraints, for sufficient
    iterations, the method returns a truly optimal result.
    In the presence of those constraints the value returned is only
    a inexpensive approximation of the optimal value.

    References
    ----------
    .. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
           "On the solution of equality constrained quadratic
            programming problems arising in optimization."
            SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
    """
    CLOSE_TO_ZERO = 1e-25

    n, = np.shape(c)  # Number of parameters
    m, = np.shape(b)  # Number of constraints

    # Initial Values
    x = Y.dot(-b)
    r = Z.dot(H.dot(x) + c)
    g = Z.dot(r)
    p = -g

    # Store ``x`` value
    if return_all:
        allvecs = [x]
    # Values for the first iteration
    H_p = H.dot(p)
    rt_g = norm(g)**2  # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)

    # If x > trust-region the problem does not have a solution.
    tr_distance = trust_radius - norm(x)
    if tr_distance < 0:
        raise ValueError("Trust region problem does not have a solution.")
    # If x == trust_radius, then x is the solution
    # to the optimization problem, since x is the
    # minimum norm solution to Ax=b.
    elif tr_distance < CLOSE_TO_ZERO:
        info = {'niter': 0, 'stop_cond': 2, 'hits_boundary': True}
        if return_all:
            allvecs.append(x)
            info['allvecs'] = allvecs
        return x, info

    # Set default tolerance
    if tol is None:
        tol = max(min(0.01 * np.sqrt(rt_g), 0.1 * rt_g), CLOSE_TO_ZERO)
    # Set default lower and upper bounds
    if lb is None:
        lb = np.full(n, -np.inf)
    if ub is None:
        ub = np.full(n, np.inf)
    # Set maximum iterations
    if max_iter is None:
        max_iter = n-m
    max_iter = min(max_iter, n-m)
    # Set maximum infeasible iterations
    if max_infeasible_iter is None:
        max_infeasible_iter = n-m

    hits_boundary = False
    stop_cond = 1
    counter = 0
    last_feasible_x = np.zeros_like(x)
    k = 0
    for i in range(max_iter):
        # Stop criteria - Tolerance : r.T g < tol
        if rt_g < tol:
            stop_cond = 4
            break
        k += 1
        # Compute curvature
        pt_H_p = H_p.dot(p)
        # Stop criteria - Negative curvature
        if pt_H_p <= 0:
            if np.isinf(trust_radius):
                    raise ValueError("Negative curvature not "
                                     "allowed for unrestrited "
                                     "problems.")
            else:
                # Find intersection with constraints
                _, alpha, intersect = box_sphere_intersections(
                    x, p, lb, ub, trust_radius, entire_line=True)
                # Update solution
                if intersect:
                    x = x + alpha*p
                # Reinforce variables are inside box constraints.
                # This is only necessary because of roundoff errors.
                x = reinforce_box_boundaries(x, lb, ub)
                # Atribute information
                stop_cond = 3
                hits_boundary = True
                break

        # Get next step
        alpha = rt_g / pt_H_p
        x_next = x + alpha*p

        # Stop criteria - Hits boundary
        if np.linalg.norm(x_next) >= trust_radius:
            # Find intersection with box constraints
            _, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
                                                           trust_radius)
            # Update solution
            if intersect:
                x = x + theta*alpha*p
            # Reinforce variables are inside box constraints.
            # This is only necessary because of roundoff errors.
            x = reinforce_box_boundaries(x, lb, ub)
            # Atribute information
            stop_cond = 2
            hits_boundary = True
            break

        # Check if ``x`` is inside the box and start counter if it is not.
        if inside_box_boundaries(x_next, lb, ub):
            counter = 0
        else:
            counter += 1
        # Whenever outside box constraints keep looking for intersections.
        if counter > 0:
            _, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
                                                           trust_radius)
            if intersect:
                last_feasible_x = x + theta*alpha*p
                # Reinforce variables are inside box constraints.
                # This is only necessary because of roundoff errors.
                last_feasible_x = reinforce_box_boundaries(last_feasible_x,
                                                           lb, ub)
                counter = 0
        # Stop after too many infeasible (regarding box constraints) iteration.
        if counter > max_infeasible_iter:
            break
        # Store ``x_next`` value
        if return_all:
            allvecs.append(x_next)

        # Update residual
        r_next = r + alpha*H_p
        # Project residual g+ = Z r+
        g_next = Z.dot(r_next)
        # Compute conjugate direction step d
        rt_g_next = norm(g_next)**2  # g.T g = r.T g (ref [1]_ p.1389)
        beta = rt_g_next / rt_g
        p = - g_next + beta*p
        # Prepare for next iteration
        x = x_next
        g = g_next
        r = g_next
        rt_g = norm(g)**2  # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)
        H_p = H.dot(p)

    if not inside_box_boundaries(x, lb, ub):
        x = last_feasible_x
        hits_boundary = True
    info = {'niter': k, 'stop_cond': stop_cond,
            'hits_boundary': hits_boundary}
    if return_all:
        info['allvecs'] = allvecs
    return x, info