1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
from __future__ import division, print_function, absolute_import
import numpy as np
import scipy.linalg
from scipy.sparse import csc_matrix
from scipy.optimize._trustregion_constr.projections \
import projections, orthogonality
from numpy.testing import (TestCase, assert_array_almost_equal,
assert_array_equal, assert_array_less,
assert_raises, assert_equal, assert_,
run_module_suite, assert_allclose, assert_warns,
dec)
import pytest
import sys
import platform
try:
from sksparse.cholmod import cholesky_AAt
sksparse_available = True
available_sparse_methods = ("NormalEquation", "AugmentedSystem")
except ImportError:
import warnings
sksparse_available = False
available_sparse_methods = ("AugmentedSystem",)
available_dense_methods = ('QRFactorization', 'SVDFactorization')
class TestProjections(TestCase):
def test_nullspace_and_least_squares_sparse(self):
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
At_dense = A_dense.T
A = csc_matrix(A_dense)
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1.12, 10, 0, 0, 100000, 6, 0.7, 8])
for method in available_sparse_methods:
Z, LS, _ = projections(A, method)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
assert_array_almost_equal(A.dot(x), 0)
# Test orthogonality
assert_array_almost_equal(orthogonality(A, x), 0)
# Test if x is the least square solution
x = LS.matvec(z)
x2 = scipy.linalg.lstsq(At_dense, z)[0]
assert_array_almost_equal(x, x2)
def test_iterative_refinements_sparse(self):
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
A = csc_matrix(A_dense)
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1.12, 10, 0, 0, 100000, 6, 0.7, 8],
[1, 0, 0, 0, 0, 1, 2, 3+1e-10])
for method in available_sparse_methods:
Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=100)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
atol = 1e-13 * abs(x).max()
err = abs(A.dot(x)).max()
assert_allclose(A.dot(x), 0, atol=atol)
# Test orthogonality
assert_allclose(orthogonality(A, x), 0, atol=1e-13)
def test_rowspace_sparse(self):
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
A = csc_matrix(A_dense)
test_points = ([1, 2, 3],
[1, 10, 3],
[1.12, 10, 0])
for method in available_sparse_methods:
_, _, Y = projections(A, method)
for z in test_points:
# Test if x is solution of A x = z
x = Y.matvec(z)
assert_array_almost_equal(A.dot(x), z)
# Test if x is in the return row space of A
A_ext = np.vstack((A_dense, x))
assert_equal(np.linalg.matrix_rank(A_dense),
np.linalg.matrix_rank(A_ext))
def test_nullspace_and_least_squares_dense(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
At = A.T
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1.12, 10, 0, 0, 100000, 6, 0.7, 8])
for method in available_dense_methods:
Z, LS, _ = projections(A, method)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
assert_array_almost_equal(A.dot(x), 0)
# Test orthogonality
assert_array_almost_equal(orthogonality(A, x), 0)
# Test if x is the least square solution
x = LS.matvec(z)
x2 = scipy.linalg.lstsq(At, z)[0]
assert_array_almost_equal(x, x2)
def test_compare_dense_and_sparse(self):
D = np.diag(range(1, 101))
A = np.hstack([D, D, D, D])
A_sparse = csc_matrix(A)
np.random.seed(0)
Z, LS, Y = projections(A)
Z_sparse, LS_sparse, Y_sparse = projections(A_sparse)
for k in range(20):
z = np.random.normal(size=(400,))
assert_array_almost_equal(Z.dot(z), Z_sparse.dot(z))
assert_array_almost_equal(LS.dot(z), LS_sparse.dot(z))
x = np.random.normal(size=(100,))
assert_array_almost_equal(Y.dot(x), Y_sparse.dot(x))
def test_compare_dense_and_sparse2(self):
D1 = np.diag([-1.7, 1, 0.5])
D2 = np.diag([1, -0.6, -0.3])
D3 = np.diag([-0.3, -1.5, 2])
A = np.hstack([D1, D2, D3])
A_sparse = csc_matrix(A)
np.random.seed(0)
Z, LS, Y = projections(A)
Z_sparse, LS_sparse, Y_sparse = projections(A_sparse)
for k in range(1):
z = np.random.normal(size=(9,))
assert_array_almost_equal(Z.dot(z), Z_sparse.dot(z))
assert_array_almost_equal(LS.dot(z), LS_sparse.dot(z))
x = np.random.normal(size=(3,))
assert_array_almost_equal(Y.dot(x), Y_sparse.dot(x))
def test_iterative_refinements_dense(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1, 0, 0, 0, 0, 1, 2, 3+1e-10])
for method in available_dense_methods:
Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=10)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
assert_array_almost_equal(A.dot(x), 0, decimal=14)
# Test orthogonality
assert_array_almost_equal(orthogonality(A, x), 0, decimal=16)
def test_rowspace_dense(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
test_points = ([1, 2, 3],
[1, 10, 3],
[1.12, 10, 0])
for method in available_dense_methods:
_, _, Y = projections(A, method)
for z in test_points:
# Test if x is solution of A x = z
x = Y.matvec(z)
assert_array_almost_equal(A.dot(x), z)
# Test if x is in the return row space of A
A_ext = np.vstack((A, x))
assert_equal(np.linalg.matrix_rank(A),
np.linalg.matrix_rank(A_ext))
class TestOrthogonality(TestCase):
def test_dense_matrix(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
test_vectors = ([-1.98931144, -1.56363389,
-0.84115584, 2.2864762,
5.599141, 0.09286976,
1.37040802, -0.28145812],
[697.92794044, -4091.65114008,
-3327.42316335, 836.86906951,
99434.98929065, -1285.37653682,
-4109.21503806, 2935.29289083])
test_expected_orth = (0, 0)
for i in range(len(test_vectors)):
x = test_vectors[i]
orth = test_expected_orth[i]
assert_array_almost_equal(orthogonality(A, x), orth)
def test_sparse_matrix(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
A = csc_matrix(A)
test_vectors = ([-1.98931144, -1.56363389,
-0.84115584, 2.2864762,
5.599141, 0.09286976,
1.37040802, -0.28145812],
[697.92794044, -4091.65114008,
-3327.42316335, 836.86906951,
99434.98929065, -1285.37653682,
-4109.21503806, 2935.29289083])
test_expected_orth = (0, 0)
for i in range(len(test_vectors)):
x = test_vectors[i]
orth = test_expected_orth[i]
assert_array_almost_equal(orthogonality(A, x), orth)
|