1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
from __future__ import division, print_function, absolute_import
import numpy as np
from copy import deepcopy
from numpy.linalg import norm
from numpy.testing import (TestCase, assert_array_almost_equal,
assert_array_equal, assert_array_less,
assert_raises, assert_equal, assert_,
run_module_suite, assert_allclose, assert_warns,
dec)
from scipy.optimize import (BFGS,
SR1,
HessianUpdateStrategy,
minimize)
class Rosenbrock:
"""Rosenbrock function.
The following optimization problem:
minimize sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)
"""
def __init__(self, n=2, random_state=0):
rng = np.random.RandomState(random_state)
self.x0 = rng.uniform(-1, 1, n)
self.x_opt = np.ones(n)
def fun(self, x):
x = np.asarray(x)
r = np.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0,
axis=0)
return r
def grad(self, x):
x = np.asarray(x)
xm = x[1:-1]
xm_m1 = x[:-2]
xm_p1 = x[2:]
der = np.zeros_like(x)
der[1:-1] = (200 * (xm - xm_m1**2) -
400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm))
der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0])
der[-1] = 200 * (x[-1] - x[-2]**2)
return der
def hess(self, x):
x = np.atleast_1d(x)
H = np.diag(-400 * x[:-1], 1) - np.diag(400 * x[:-1], -1)
diagonal = np.zeros(len(x), dtype=x.dtype)
diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2
diagonal[-1] = 200
diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:]
H = H + np.diag(diagonal)
return H
class TestHessianUpdateStrategy(TestCase):
def test_hessian_initialization(self):
quasi_newton = (BFGS(), SR1())
for qn in quasi_newton:
qn.initialize(5, 'hess')
B = qn.get_matrix()
assert_array_equal(B, np.eye(5))
# For this list of points it is known
# that no exception occur during the
# Hessian update. Hence no update is
# skiped or damped.
def test_rosenbrock_with_no_exception(self):
# Define auxiliar problem
prob = Rosenbrock(n=5)
# Define iteration points
x_list = [[0.0976270, 0.4303787, 0.2055267, 0.0897663, -0.15269040],
[0.1847239, 0.0505757, 0.2123832, 0.0255081, 0.00083286],
[0.2142498, -0.0188480, 0.0503822, 0.0347033, 0.03323606],
[0.2071680, -0.0185071, 0.0341337, -0.0139298, 0.02881750],
[0.1533055, -0.0322935, 0.0280418, -0.0083592, 0.01503699],
[0.1382378, -0.0276671, 0.0266161, -0.0074060, 0.02801610],
[0.1651957, -0.0049124, 0.0269665, -0.0040025, 0.02138184],
[0.2354930, 0.0443711, 0.0173959, 0.0041872, 0.00794563],
[0.4168118, 0.1433867, 0.0111714, 0.0126265, -0.00658537],
[0.4681972, 0.2153273, 0.0225249, 0.0152704, -0.00463809],
[0.6023068, 0.3346815, 0.0731108, 0.0186618, -0.00371541],
[0.6415743, 0.3985468, 0.1324422, 0.0214160, -0.00062401],
[0.7503690, 0.5447616, 0.2804541, 0.0539851, 0.00242230],
[0.7452626, 0.5644594, 0.3324679, 0.0865153, 0.00454960],
[0.8059782, 0.6586838, 0.4229577, 0.1452990, 0.00976702],
[0.8549542, 0.7226562, 0.4991309, 0.2420093, 0.02772661],
[0.8571332, 0.7285741, 0.5279076, 0.2824549, 0.06030276],
[0.8835633, 0.7727077, 0.5957984, 0.3411303, 0.09652185],
[0.9071558, 0.8299587, 0.6771400, 0.4402896, 0.17469338],
[0.9190793, 0.8486480, 0.7163332, 0.5083780, 0.26107691],
[0.9371223, 0.8762177, 0.7653702, 0.5773109, 0.32181041],
[0.9554613, 0.9119893, 0.8282687, 0.6776178, 0.43162744],
[0.9545744, 0.9099264, 0.8270244, 0.6822220, 0.45237623],
[0.9688112, 0.9351710, 0.8730961, 0.7546601, 0.56622448],
[0.9743227, 0.9491953, 0.9005150, 0.8086497, 0.64505437],
[0.9807345, 0.9638853, 0.9283012, 0.8631675, 0.73812581],
[0.9886746, 0.9777760, 0.9558950, 0.9123417, 0.82726553],
[0.9899096, 0.9803828, 0.9615592, 0.9255600, 0.85822149],
[0.9969510, 0.9935441, 0.9864657, 0.9726775, 0.94358663],
[0.9979533, 0.9960274, 0.9921724, 0.9837415, 0.96626288],
[0.9995981, 0.9989171, 0.9974178, 0.9949954, 0.99023356],
[1.0002640, 1.0005088, 1.0010594, 1.0021161, 1.00386912],
[0.9998903, 0.9998459, 0.9997795, 0.9995484, 0.99916305],
[1.0000008, 0.9999905, 0.9999481, 0.9998903, 0.99978047],
[1.0000004, 0.9999983, 1.0000001, 1.0000031, 1.00000297],
[0.9999995, 1.0000003, 1.0000005, 1.0000001, 1.00000032],
[0.9999999, 0.9999997, 0.9999994, 0.9999989, 0.99999786],
[0.9999999, 0.9999999, 0.9999999, 0.9999999, 0.99999991]]
# Get iteration points
grad_list = [prob.grad(x) for x in x_list]
delta_x = [np.array(x_list[i+1])-np.array(x_list[i])
for i in range(len(x_list)-1)]
delta_grad = [grad_list[i+1]-grad_list[i]
for i in range(len(grad_list)-1)]
# Check curvature condition
for i in range(len(delta_x)):
s = delta_x[i]
y = delta_grad[i]
if np.dot(s, y) <= 0:
raise ArithmeticError()
# Define QuasiNewton update
for quasi_newton in (BFGS(init_scale=1, min_curvature=1e-4),
SR1(init_scale=1)):
hess = deepcopy(quasi_newton)
inv_hess = deepcopy(quasi_newton)
hess.initialize(len(x_list[0]), 'hess')
inv_hess.initialize(len(x_list[0]), 'inv_hess')
# Compare the hessian and its inverse
for i in range(len(delta_x)):
s = delta_x[i]
y = delta_grad[i]
hess.update(s, y)
inv_hess.update(s, y)
B = hess.get_matrix()
H = inv_hess.get_matrix()
assert_array_almost_equal(np.linalg.inv(B), H, decimal=10)
B_true = prob.hess(x_list[i+1])
assert_array_less(norm(B - B_true)/norm(B_true), 0.1)
def test_SR1_skip_update(self):
# Define auxiliar problem
prob = Rosenbrock(n=5)
# Define iteration points
x_list = [[0.0976270, 0.4303787, 0.2055267, 0.0897663, -0.15269040],
[0.1847239, 0.0505757, 0.2123832, 0.0255081, 0.00083286],
[0.2142498, -0.0188480, 0.0503822, 0.0347033, 0.03323606],
[0.2071680, -0.0185071, 0.0341337, -0.0139298, 0.02881750],
[0.1533055, -0.0322935, 0.0280418, -0.0083592, 0.01503699],
[0.1382378, -0.0276671, 0.0266161, -0.0074060, 0.02801610],
[0.1651957, -0.0049124, 0.0269665, -0.0040025, 0.02138184],
[0.2354930, 0.0443711, 0.0173959, 0.0041872, 0.00794563],
[0.4168118, 0.1433867, 0.0111714, 0.0126265, -0.00658537],
[0.4681972, 0.2153273, 0.0225249, 0.0152704, -0.00463809],
[0.6023068, 0.3346815, 0.0731108, 0.0186618, -0.00371541],
[0.6415743, 0.3985468, 0.1324422, 0.0214160, -0.00062401],
[0.7503690, 0.5447616, 0.2804541, 0.0539851, 0.00242230],
[0.7452626, 0.5644594, 0.3324679, 0.0865153, 0.00454960],
[0.8059782, 0.6586838, 0.4229577, 0.1452990, 0.00976702],
[0.8549542, 0.7226562, 0.4991309, 0.2420093, 0.02772661],
[0.8571332, 0.7285741, 0.5279076, 0.2824549, 0.06030276],
[0.8835633, 0.7727077, 0.5957984, 0.3411303, 0.09652185],
[0.9071558, 0.8299587, 0.6771400, 0.4402896, 0.17469338]]
# Get iteration points
grad_list = [prob.grad(x) for x in x_list]
delta_x = [np.array(x_list[i+1])-np.array(x_list[i])
for i in range(len(x_list)-1)]
delta_grad = [grad_list[i+1]-grad_list[i]
for i in range(len(grad_list)-1)]
hess = SR1(init_scale=1, min_denominator=1e-2)
hess.initialize(len(x_list[0]), 'hess')
# Compare the hessian and its inverse
for i in range(len(delta_x)-1):
s = delta_x[i]
y = delta_grad[i]
hess.update(s, y)
# Test skip update
B = np.copy(hess.get_matrix())
s = delta_x[17]
y = delta_grad[17]
hess.update(s, y)
B_updated = np.copy(hess.get_matrix())
assert_array_equal(B, B_updated)
def test_BFGS_skip_update(self):
# Define auxiliar problem
prob = Rosenbrock(n=5)
# Define iteration points
x_list = [[0.0976270, 0.4303787, 0.2055267, 0.0897663, -0.15269040],
[0.1847239, 0.0505757, 0.2123832, 0.0255081, 0.00083286],
[0.2142498, -0.0188480, 0.0503822, 0.0347033, 0.03323606],
[0.2071680, -0.0185071, 0.0341337, -0.0139298, 0.02881750],
[0.1533055, -0.0322935, 0.0280418, -0.0083592, 0.01503699],
[0.1382378, -0.0276671, 0.0266161, -0.0074060, 0.02801610],
[0.1651957, -0.0049124, 0.0269665, -0.0040025, 0.02138184]]
# Get iteration points
grad_list = [prob.grad(x) for x in x_list]
delta_x = [np.array(x_list[i+1])-np.array(x_list[i])
for i in range(len(x_list)-1)]
delta_grad = [grad_list[i+1]-grad_list[i]
for i in range(len(grad_list)-1)]
hess = BFGS(init_scale=1, min_curvature=10)
hess.initialize(len(x_list[0]), 'hess')
# Compare the hessian and its inverse
for i in range(len(delta_x)-1):
s = delta_x[i]
y = delta_grad[i]
hess.update(s, y)
# Test skip update
B = np.copy(hess.get_matrix())
s = delta_x[5]
y = delta_grad[5]
hess.update(s, y)
B_updated = np.copy(hess.get_matrix())
assert_array_equal(B, B_updated)
|