File: test_lsq_linear.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (150 lines) | stat: -rw-r--r-- 5,022 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
from numpy.linalg import lstsq
from numpy.testing import assert_allclose, assert_equal, assert_
from pytest import raises as assert_raises

from scipy.sparse import rand
from scipy.sparse.linalg import aslinearoperator
from scipy.optimize import lsq_linear


A = np.array([
    [0.171, -0.057],
    [-0.049, -0.248],
    [-0.166, 0.054],
])
b = np.array([0.074, 1.014, -0.383])


class BaseMixin(object):
    def setup_method(self):
        self.rnd = np.random.RandomState(0)

    def test_dense_no_bounds(self):
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, method=self.method, lsq_solver=lsq_solver)
            assert_allclose(res.x, lstsq(A, b, rcond=-1)[0])

    def test_dense_bounds(self):
        # Solutions for comparison are taken from MATLAB.
        lb = np.array([-1, -10])
        ub = np.array([1, 0])
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (lb, ub), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.x, lstsq(A, b, rcond=-1)[0])

        lb = np.array([0.0, -np.inf])
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (lb, np.inf), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.x, np.array([0.0, -4.084174437334673]),
                            atol=1e-6)

        lb = np.array([-1, 0])
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (lb, np.inf), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.x, np.array([0.448427311733504, 0]),
                            atol=1e-15)

        ub = np.array([np.inf, -5])
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (-np.inf, ub), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.x, np.array([-0.105560998682388, -5]))

        ub = np.array([-1, np.inf])
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (-np.inf, ub), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.x, np.array([-1, -4.181102129483254]))

        lb = np.array([0, -4])
        ub = np.array([1, 0])
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (lb, ub), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.x, np.array([0.005236663400791, -4]))

    def test_dense_rank_deficient(self):
        A = np.array([[-0.307, -0.184]])
        b = np.array([0.773])
        lb = [-0.1, -0.1]
        ub = [0.1, 0.1]
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (lb, ub), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.x, [-0.1, -0.1])

        A = np.array([
            [0.334, 0.668],
            [-0.516, -1.032],
            [0.192, 0.384],
        ])
        b = np.array([-1.436, 0.135, 0.909])
        lb = [0, -1]
        ub = [1, -0.5]
        for lsq_solver in self.lsq_solvers:
            res = lsq_linear(A, b, (lb, ub), method=self.method,
                             lsq_solver=lsq_solver)
            assert_allclose(res.optimality, 0, atol=1e-11)

    def test_full_result(self):
        lb = np.array([0, -4])
        ub = np.array([1, 0])
        res = lsq_linear(A, b, (lb, ub), method=self.method)

        assert_allclose(res.x, [0.005236663400791, -4])

        r = A.dot(res.x) - b
        assert_allclose(res.cost, 0.5 * np.dot(r, r))
        assert_allclose(res.fun, r)

        assert_allclose(res.optimality, 0.0, atol=1e-12)
        assert_equal(res.active_mask, [0, -1])
        assert_(res.nit < 15)
        assert_(res.status == 1 or res.status == 3)
        assert_(isinstance(res.message, str))
        assert_(res.success)


class SparseMixin(object):
    def test_sparse_and_LinearOperator(self):
        m = 5000
        n = 1000
        A = rand(m, n, random_state=0)
        b = self.rnd.randn(m)
        res = lsq_linear(A, b)
        assert_allclose(res.optimality, 0, atol=1e-6)

        A = aslinearoperator(A)
        res = lsq_linear(A, b)
        assert_allclose(res.optimality, 0, atol=1e-6)

    def test_sparse_bounds(self):
        m = 5000
        n = 1000
        A = rand(m, n, random_state=0)
        b = self.rnd.randn(m)
        lb = self.rnd.randn(n)
        ub = lb + 1
        res = lsq_linear(A, b, (lb, ub))
        assert_allclose(res.optimality, 0.0, atol=1e-8)

        res = lsq_linear(A, b, (lb, ub), lsmr_tol=1e-13)
        assert_allclose(res.optimality, 0.0, atol=1e-8)

        res = lsq_linear(A, b, (lb, ub), lsmr_tol='auto')
        assert_allclose(res.optimality, 0.0, atol=1e-8)


class TestTRF(BaseMixin, SparseMixin):
    method = 'trf'
    lsq_solvers = ['exact', 'lsmr']


class TestBVLS(BaseMixin):
    method = 'bvls'
    lsq_solvers = ['exact']