File: test_minimize_constrained.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (564 lines) | stat: -rw-r--r-- 17,981 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
from __future__ import division, print_function, absolute_import
import numpy as np
import pytest
from scipy.linalg import block_diag
from scipy.sparse import csc_matrix
from numpy.testing import (TestCase, assert_array_almost_equal,
                           assert_array_less)
from pytest import raises
from scipy.optimize import (NonlinearConstraint,
                            LinearConstraint,
                            Bounds,
                            minimize,
                            BFGS,
                            SR1)
from scipy._lib._numpy_compat import suppress_warnings


class Maratos:
    """Problem 15.4 from Nocedal and Wright

    The following optimization problem:
        minimize 2*(x[0]**2 + x[1]**2 - 1) - x[0]
        Subject to: x[0]**2 + x[1]**2 - 1 = 0
    """

    def __init__(self, degrees=60, constr_jac=None, constr_hess=None):
        rads = degrees/180*np.pi
        self.x0 = [np.cos(rads), np.sin(rads)]
        self.x_opt = np.array([1.0, 0.0])
        self.constr_jac = constr_jac
        self.constr_hess = constr_hess
        self.bounds = None

    def fun(self, x):
        return 2*(x[0]**2 + x[1]**2 - 1) - x[0]

    def grad(self, x):
        return np.array([4*x[0]-1, 4*x[1]])

    def hess(self, x):
        return 4*np.eye(2)

    @property
    def constr(self):
        def fun(x):
            return x[0]**2 + x[1]**2

        if self.constr_jac is None:
            def jac(x):
                return [[2*x[0], 2*x[1]]]
        else:
            jac = self.constr_jac

        if self.constr_hess is None:
            def hess(x, v):
                return 2*v[0]*np.eye(2)
        else:
            hess = self.constr_hess

        return NonlinearConstraint(fun, 1, 1, jac, hess)


class MaratosTestArgs:
    """Problem 15.4 from Nocedal and Wright

    The following optimization problem:
        minimize 2*(x[0]**2 + x[1]**2 - 1) - x[0]
        Subject to: x[0]**2 + x[1]**2 - 1 = 0
    """

    def __init__(self, a, b, degrees=60, constr_jac=None, constr_hess=None):
        rads = degrees/180*np.pi
        self.x0 = [np.cos(rads), np.sin(rads)]
        self.x_opt = np.array([1.0, 0.0])
        self.constr_jac = constr_jac
        self.constr_hess = constr_hess
        self.a = a
        self.b = b
        self.bounds = None

    def _test_args(self, a, b):
        if self.a != a or self.b != b:
            raise ValueError()

    def fun(self, x, a, b):
        self._test_args(a, b)
        return 2*(x[0]**2 + x[1]**2 - 1) - x[0]

    def grad(self, x, a, b):
        self._test_args(a, b)
        return np.array([4*x[0]-1, 4*x[1]])

    def hess(self, x, a, b):
        self._test_args(a, b)
        return 4*np.eye(2)

    @property
    def constr(self):
        def fun(x):
            return x[0]**2 + x[1]**2

        if self.constr_jac is None:
            def jac(x):
                return [[4*x[0], 4*x[1]]]
        else:
            jac = self.constr_jac

        if self.constr_hess is None:
            def hess(x, v):
                return 2*v[0]*np.eye(2)
        else:
            hess = self.constr_hess

        return NonlinearConstraint(fun, 1, 1, jac, hess)


class MaratosGradInFunc:
    """Problem 15.4 from Nocedal and Wright

    The following optimization problem:
        minimize 2*(x[0]**2 + x[1]**2 - 1) - x[0]
        Subject to: x[0]**2 + x[1]**2 - 1 = 0
    """

    def __init__(self, degrees=60, constr_jac=None, constr_hess=None):
        rads = degrees/180*np.pi
        self.x0 = [np.cos(rads), np.sin(rads)]
        self.x_opt = np.array([1.0, 0.0])
        self.constr_jac = constr_jac
        self.constr_hess = constr_hess
        self.bounds = None

    def fun(self, x):
        return (2*(x[0]**2 + x[1]**2 - 1) - x[0],
                np.array([4*x[0]-1, 4*x[1]]))

    @property
    def grad(self):
        return True

    def hess(self, x):
        return 4*np.eye(2)

    @property
    def constr(self):
        def fun(x):
            return x[0]**2 + x[1]**2

        if self.constr_jac is None:
            def jac(x):
                return [[4*x[0], 4*x[1]]]
        else:
            jac = self.constr_jac

        if self.constr_hess is None:
            def hess(x, v):
                return 2*v[0]*np.eye(2)
        else:
            hess = self.constr_hess

        return NonlinearConstraint(fun, 1, 1, jac, hess)


class HyperbolicIneq:
    """Problem 15.1 from Nocedal and Wright

    The following optimization problem:
        minimize 1/2*(x[0] - 2)**2 + 1/2*(x[1] - 1/2)**2
        Subject to: 1/(x[0] + 1) - x[1] >= 1/4
                                   x[0] >= 0
                                   x[1] >= 0
    """
    def __init__(self, constr_jac=None, constr_hess=None):
        self.x0 = [0, 0]
        self.x_opt = [1.952823, 0.088659]
        self.constr_jac = constr_jac
        self.constr_hess = constr_hess
        self.bounds = Bounds(0, np.inf)

    def fun(self, x):
        return 1/2*(x[0] - 2)**2 + 1/2*(x[1] - 1/2)**2

    def grad(self, x):
        return [x[0] - 2, x[1] - 1/2]

    def hess(self, x):
        return np.eye(2)

    @property
    def constr(self):
        def fun(x):
            return 1/(x[0] + 1) - x[1]

        if self.constr_jac is None:
            def jac(x):
                return [[-1/(x[0] + 1)**2, -1]]
        else:
            jac = self.constr_jac

        if self.constr_hess is None:
            def hess(x, v):
                return 2*v[0]*np.array([[1/(x[0] + 1)**3, 0],
                                        [0, 0]])
        else:
            hess = self.constr_hess

        return NonlinearConstraint(fun, 0.25, np.inf, jac, hess)


class Rosenbrock:
    """Rosenbrock function.

    The following optimization problem:
        minimize sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)
    """

    def __init__(self, n=2, random_state=0):
        rng = np.random.RandomState(random_state)
        self.x0 = rng.uniform(-1, 1, n)
        self.x_opt = np.ones(n)
        self.bounds = None

    def fun(self, x):
        x = np.asarray(x)
        r = np.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0,
                   axis=0)
        return r

    def grad(self, x):
        x = np.asarray(x)
        xm = x[1:-1]
        xm_m1 = x[:-2]
        xm_p1 = x[2:]
        der = np.zeros_like(x)
        der[1:-1] = (200 * (xm - xm_m1**2) -
                     400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm))
        der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0])
        der[-1] = 200 * (x[-1] - x[-2]**2)
        return der

    def hess(self, x):
        x = np.atleast_1d(x)
        H = np.diag(-400 * x[:-1], 1) - np.diag(400 * x[:-1], -1)
        diagonal = np.zeros(len(x), dtype=x.dtype)
        diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2
        diagonal[-1] = 200
        diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:]
        H = H + np.diag(diagonal)
        return H

    @property
    def constr(self):
        return ()


class IneqRosenbrock(Rosenbrock):
    """Rosenbrock subject to inequality constraints.

    The following optimization problem:
        minimize sum(100.0*(x[1] - x[0]**2)**2.0 + (1 - x[0])**2)
        subject to: x[0] + 2 x[1] <= 1

    Taken from matlab ``fmincon`` documentation.
    """
    def __init__(self, random_state=0):
        Rosenbrock.__init__(self, 2, random_state)
        self.x0 = [-1, -0.5]
        self.x_opt = [0.5022, 0.2489]
        self.bounds = None

    @property
    def constr(self):
        A = [[1, 2]]
        b = 1
        return LinearConstraint(A, -np.inf, b)


class EqIneqRosenbrock(Rosenbrock):
    """Rosenbrock subject to equality and inequality constraints.

    The following optimization problem:
        minimize sum(100.0*(x[1] - x[0]**2)**2.0 + (1 - x[0])**2)
        subject to: x[0] + 2 x[1] <= 1
                    2 x[0] + x[1] = 1

    Taken from matlab ``fimincon`` documentation.
    """
    def __init__(self, random_state=0):
        Rosenbrock.__init__(self, 2, random_state)
        self.x0 = [-1, -0.5]
        self.x_opt = [0.41494, 0.17011]
        self.bounds = None

    @property
    def constr(self):
        A_ineq = [[1, 2]]
        b_ineq = 1
        A_eq = [[2, 1]]
        b_eq = 1
        return (LinearConstraint(A_ineq, -np.inf, b_ineq),
                LinearConstraint(A_eq, b_eq, b_eq))


class Elec:
    """Distribution of electrons on a sphere.

    Problem no 2 from COPS collection [2]_. Find
    the equilibrium state distribution (of minimal
    potential) of the electrons positioned on a
    conducting sphere.

    References
    ----------
    .. [1] E. D. Dolan, J. J. Mor\'{e}, and T. S. Munson,
           "Benchmarking optimization software with COPS 3.0.",
            Argonne National Lab., Argonne, IL (US), 2004.
    """
    def __init__(self, n_electrons=200, random_state=0,
                 constr_jac=None, constr_hess=None):
        self.n_electrons = n_electrons
        self.rng = np.random.RandomState(random_state)
        # Initial Guess
        phi = self.rng.uniform(0, 2 * np.pi, self.n_electrons)
        theta = self.rng.uniform(-np.pi, np.pi, self.n_electrons)
        x = np.cos(theta) * np.cos(phi)
        y = np.cos(theta) * np.sin(phi)
        z = np.sin(theta)
        self.x0 = np.hstack((x, y, z))
        self.x_opt = None
        self.constr_jac = constr_jac
        self.constr_hess = constr_hess
        self.bounds = None

    def _get_cordinates(self, x):
        x_coord = x[:self.n_electrons]
        y_coord = x[self.n_electrons:2 * self.n_electrons]
        z_coord = x[2 * self.n_electrons:]
        return x_coord, y_coord, z_coord

    def _compute_coordinate_deltas(self, x):
        x_coord, y_coord, z_coord = self._get_cordinates(x)
        dx = x_coord[:, None] - x_coord
        dy = y_coord[:, None] - y_coord
        dz = z_coord[:, None] - z_coord
        return dx, dy, dz

    def fun(self, x):
        dx, dy, dz = self._compute_coordinate_deltas(x)
        with np.errstate(divide='ignore'):
            dm1 = (dx**2 + dy**2 + dz**2) ** -0.5
        dm1[np.diag_indices_from(dm1)] = 0
        return 0.5 * np.sum(dm1)

    def grad(self, x):
        dx, dy, dz = self._compute_coordinate_deltas(x)

        with np.errstate(divide='ignore'):
            dm3 = (dx**2 + dy**2 + dz**2) ** -1.5
        dm3[np.diag_indices_from(dm3)] = 0

        grad_x = -np.sum(dx * dm3, axis=1)
        grad_y = -np.sum(dy * dm3, axis=1)
        grad_z = -np.sum(dz * dm3, axis=1)

        return np.hstack((grad_x, grad_y, grad_z))

    def hess(self, x):
        dx, dy, dz = self._compute_coordinate_deltas(x)
        d = (dx**2 + dy**2 + dz**2) ** 0.5

        with np.errstate(divide='ignore'):
            dm3 = d ** -3
            dm5 = d ** -5

        i = np.arange(self.n_electrons)
        dm3[i, i] = 0
        dm5[i, i] = 0

        Hxx = dm3 - 3 * dx**2 * dm5
        Hxx[i, i] = -np.sum(Hxx, axis=1)

        Hxy = -3 * dx * dy * dm5
        Hxy[i, i] = -np.sum(Hxy, axis=1)

        Hxz = -3 * dx * dz * dm5
        Hxz[i, i] = -np.sum(Hxz, axis=1)

        Hyy = dm3 - 3 * dy**2 * dm5
        Hyy[i, i] = -np.sum(Hyy, axis=1)

        Hyz = -3 * dy * dz * dm5
        Hyz[i, i] = -np.sum(Hyz, axis=1)

        Hzz = dm3 - 3 * dz**2 * dm5
        Hzz[i, i] = -np.sum(Hzz, axis=1)

        H = np.vstack((
            np.hstack((Hxx, Hxy, Hxz)),
            np.hstack((Hxy, Hyy, Hyz)),
            np.hstack((Hxz, Hyz, Hzz))
        ))

        return H

    @property
    def constr(self):
        def fun(x):
            x_coord, y_coord, z_coord = self._get_cordinates(x)
            return x_coord**2 + y_coord**2 + z_coord**2 - 1

        if self.constr_jac is None:
            def jac(x):
                x_coord, y_coord, z_coord = self._get_cordinates(x)
                Jx = 2 * np.diag(x_coord)
                Jy = 2 * np.diag(y_coord)
                Jz = 2 * np.diag(z_coord)
                return csc_matrix(np.hstack((Jx, Jy, Jz)))
        else:
            jac = self.constr_jac

        if self.constr_hess is None:
            def hess(x, v):
                D = 2 * np.diag(v)
                return block_diag(D, D, D)
        else:
            hess = self.constr_hess

        return NonlinearConstraint(fun, -np.inf, 0, jac, hess)


class TestTrustRegionConstr(TestCase):

    def test_list_of_problems(self):
        list_of_problems = [Maratos(),
                            Maratos(constr_hess='2-point'),
                            Maratos(constr_hess=SR1()),
                            Maratos(constr_jac='2-point', constr_hess=SR1()),
                            MaratosGradInFunc(),
                            HyperbolicIneq(),
                            HyperbolicIneq(constr_hess='3-point'),
                            HyperbolicIneq(constr_hess=BFGS()),
                            HyperbolicIneq(constr_jac='3-point',
                                           constr_hess=BFGS()),
                            Rosenbrock(),
                            IneqRosenbrock(),
                            EqIneqRosenbrock(),
                            Elec(n_electrons=2),
                            Elec(n_electrons=2, constr_hess='2-point'),
                            Elec(n_electrons=2, constr_hess=SR1()),
                            Elec(n_electrons=2, constr_jac='3-point',
                                 constr_hess=SR1())]

        for prob in list_of_problems:
            for grad in (prob.grad, '3-point', False):
                for hess in (prob.hess,
                             '3-point',
                             SR1(),
                             BFGS(exception_strategy='damp_update'),
                             BFGS(exception_strategy='skip_update')):

                    # Remove exceptions
                    if grad in ('2-point', '3-point', 'cs', False) and \
                       hess in ('2-point', '3-point', 'cs'):
                        continue
                    if prob.grad is True and grad in ('3-point', False):
                        continue
                    with suppress_warnings() as sup:
                        sup.filter(UserWarning, "delta_grad == 0.0")
                        result = minimize(prob.fun, prob.x0,
                                          method='trust-constr',
                                          jac=grad, hess=hess,
                                          bounds=prob.bounds,
                                          constraints=prob.constr)

                    if prob.x_opt is not None:
                        assert_array_almost_equal(result.x, prob.x_opt, decimal=5)
                        # gtol
                        if result.status == 1:
                            assert_array_less(result.optimality, 1e-8)
                    # xtol
                    if result.status == 2:
                        assert_array_less(result.tr_radius, 1e-8)

                        if result.method == "tr_interior_point":
                            assert_array_less(result.barrier_parameter, 1e-8)
                    # max iter
                    if result.status in (0, 3):
                        raise RuntimeError("Invalid termination condition.")

    def test_no_constraints(self):
        prob = Rosenbrock()
        result = minimize(prob.fun, prob.x0,
                          method='trust-constr',
                          jac=prob.grad, hess=prob.hess)
        result1 = minimize(prob.fun, prob.x0,
                           method='L-BFGS-B',
                           jac='2-point')
        with pytest.warns(UserWarning):
            result2 = minimize(prob.fun, prob.x0,
                                method='L-BFGS-B',
                                jac='3-point')
        assert_array_almost_equal(result.x, prob.x_opt, decimal=5)
        assert_array_almost_equal(result1.x, prob.x_opt, decimal=5)
        assert_array_almost_equal(result2.x, prob.x_opt, decimal=5)

    def test_hessp(self):
        prob = Maratos()

        def hessp(x, p):
            H = prob.hess(x)
            return H.dot(p)

        result = minimize(prob.fun, prob.x0,
                          method='trust-constr',
                          jac=prob.grad, hessp=hessp,
                          bounds=prob.bounds,
                          constraints=prob.constr)

        if prob.x_opt is not None:
            assert_array_almost_equal(result.x, prob.x_opt, decimal=2)

        # gtol
        if result.status == 1:
            assert_array_less(result.optimality, 1e-8)
        # xtol
        if result.status == 2:
            assert_array_less(result.tr_radius, 1e-8)

            if result.method == "tr_interior_point":
                assert_array_less(result.barrier_parameter, 1e-8)
        # max iter
        if result.status in (0, 3):
            raise RuntimeError("Invalid termination condition.")

    def test_args(self):
        prob = MaratosTestArgs("a", 234)

        result = minimize(prob.fun, prob.x0, ("a", 234),
                          method='trust-constr',
                          jac=prob.grad, hess=prob.hess,
                          bounds=prob.bounds,
                          constraints=prob.constr)

        if prob.x_opt is not None:
            assert_array_almost_equal(result.x, prob.x_opt, decimal=2)

        # gtol
        if result.status == 1:
            assert_array_less(result.optimality, 1e-8)
        # xtol
        if result.status == 2:
            assert_array_less(result.tr_radius, 1e-8)

            if result.method == "tr_interior_point":
                assert_array_less(result.barrier_parameter, 1e-8)
        # max iter
        if result.status in (0, 3):
            raise RuntimeError("Invalid termination condition.")

    def test_raise_exception(self):
        prob = Maratos()

        raises(ValueError, minimize, prob.fun, prob.x0, method='trust-constr',
               jac='2-point', hess='2-point', constraints=prob.constr)