File: test_slsqp.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (456 lines) | stat: -rw-r--r-- 17,715 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""
Unit test for SLSQP optimization.
"""
from __future__ import division, print_function, absolute_import

import pytest
from numpy.testing import (assert_, assert_array_almost_equal,
                           assert_allclose, assert_equal)
from pytest import raises as assert_raises
import numpy as np

from scipy.optimize import fmin_slsqp, minimize


class MyCallBack(object):
    """pass a custom callback function

    This makes sure it's being used.
    """
    def __init__(self):
        self.been_called = False
        self.ncalls = 0

    def __call__(self, x):
        self.been_called = True
        self.ncalls += 1


class TestSLSQP(object):
    """
    Test SLSQP algorithm using Example 14.4 from Numerical Methods for
    Engineers by Steven Chapra and Raymond Canale.
    This example maximizes the function f(x) = 2*x*y + 2*x - x**2 - 2*y**2,
    which has a maximum at x=2, y=1.
    """
    def setup_method(self):
        self.opts = {'disp': False}

    def fun(self, d, sign=1.0):
        """
        Arguments:
        d     - A list of two elements, where d[0] represents x and d[1] represents y
                 in the following equation.
        sign - A multiplier for f.  Since we want to optimize it, and the scipy
               optimizers can only minimize functions, we need to multiply it by
               -1 to achieve the desired solution
        Returns:
        2*x*y + 2*x - x**2 - 2*y**2

        """
        x = d[0]
        y = d[1]
        return sign*(2*x*y + 2*x - x**2 - 2*y**2)

    def jac(self, d, sign=1.0):
        """
        This is the derivative of fun, returning a numpy array
        representing df/dx and df/dy.

        """
        x = d[0]
        y = d[1]
        dfdx = sign*(-2*x + 2*y + 2)
        dfdy = sign*(2*x - 4*y)
        return np.array([dfdx, dfdy], float)

    def fun_and_jac(self, d, sign=1.0):
        return self.fun(d, sign), self.jac(d, sign)

    def f_eqcon(self, x, sign=1.0):
        """ Equality constraint """
        return np.array([x[0] - x[1]])

    def fprime_eqcon(self, x, sign=1.0):
        """ Equality constraint, derivative """
        return np.array([[1, -1]])

    def f_eqcon_scalar(self, x, sign=1.0):
        """ Scalar equality constraint """
        return self.f_eqcon(x, sign)[0]

    def fprime_eqcon_scalar(self, x, sign=1.0):
        """ Scalar equality constraint, derivative """
        return self.fprime_eqcon(x, sign)[0].tolist()

    def f_ieqcon(self, x, sign=1.0):
        """ Inequality constraint """
        return np.array([x[0] - x[1] - 1.0])

    def fprime_ieqcon(self, x, sign=1.0):
        """ Inequality constraint, derivative """
        return np.array([[1, -1]])

    def f_ieqcon2(self, x):
        """ Vector inequality constraint """
        return np.asarray(x)

    def fprime_ieqcon2(self, x):
        """ Vector inequality constraint, derivative """
        return np.identity(x.shape[0])

    # minimize
    def test_minimize_unbounded_approximated(self):
        # Minimize, method='SLSQP': unbounded, approximated jacobian.
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_unbounded_given(self):
        # Minimize, method='SLSQP': unbounded, given jacobian.
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       jac=self.jac, method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_bounded_approximated(self):
        # Minimize, method='SLSQP': bounded, approximated jacobian.
        with np.errstate(invalid='ignore'):
            res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                           bounds=((2.5, None), (None, 0.5)),
                           method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2.5, 0.5])
        assert_(2.5 <= res.x[0])
        assert_(res.x[1] <= 0.5)

    def test_minimize_unbounded_combined(self):
        # Minimize, method='SLSQP': unbounded, combined function and jacobian.
        res = minimize(self.fun_and_jac, [-1.0, 1.0], args=(-1.0, ),
                       jac=True, method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_equality_approximated(self):
        # Minimize with method='SLSQP': equality constraint, approx. jacobian.
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, )},
                       method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given(self):
        # Minimize with method='SLSQP': equality constraint, given jacobian.
        res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
                       method='SLSQP', args=(-1.0,),
                       constraints={'type': 'eq', 'fun':self.f_eqcon,
                                    'args': (-1.0, )},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given2(self):
        # Minimize with method='SLSQP': equality constraint, given jacobian
        # for fun and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0,),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given_cons_scalar(self):
        # Minimize with method='SLSQP': scalar equality constraint, given
        # jacobian for fun and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0,),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon_scalar,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon_scalar},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_inequality_given(self):
        # Minimize with method='SLSQP': inequality constraint, given jacobian.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0, ),
                       constraints={'type': 'ineq',
                                    'fun': self.f_ieqcon,
                                    'args': (-1.0, )},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1], atol=1e-3)

    def test_minimize_inequality_given_vector_constraints(self):
        # Minimize with method='SLSQP': vector inequality constraint, given
        # jacobian.
        res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
                       method='SLSQP', args=(-1.0,),
                       constraints={'type': 'ineq',
                                    'fun': self.f_ieqcon2,
                                    'jac': self.fprime_ieqcon2},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_bound_equality_given2(self):
        # Minimize with method='SLSQP': bounds, eq. const., given jac. for
        # fun. and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0, ),
                       bounds=[(-0.8, 1.), (-1, 0.8)],
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [0.8, 0.8], atol=1e-3)
        assert_(-0.8 <= res.x[0] <= 1)
        assert_(-1 <= res.x[1] <= 0.8)

    # fmin_slsqp
    def test_unbounded_approximated(self):
        # SLSQP: unbounded, approximated jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1])

    def test_unbounded_given(self):
        # SLSQP: unbounded, given jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
                         fprime = self.jac, iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1])

    def test_equality_approximated(self):
        # SLSQP: equality constraint, approximated jacobian.
        res = fmin_slsqp(self.fun,[-1.0,1.0], args=(-1.0,),
                         eqcons = [self.f_eqcon],
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_equality_given(self):
        # SLSQP: equality constraint, given jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0,),
                         eqcons = [self.f_eqcon], iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_equality_given2(self):
        # SLSQP: equality constraint, given jacobian for fun and const.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0,),
                         f_eqcons = self.f_eqcon,
                         fprime_eqcons = self.fprime_eqcon,
                         iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_inequality_given(self):
        # SLSQP: inequality constraint, given jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0, ),
                         ieqcons = [self.f_ieqcon],
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1], decimal=3)

    def test_bound_equality_given2(self):
        # SLSQP: bounds, eq. const., given jac. for fun. and const.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0, ),
                         bounds = [(-0.8, 1.), (-1, 0.8)],
                         f_eqcons = self.f_eqcon,
                         fprime_eqcons = self.fprime_eqcon,
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [0.8, 0.8], decimal=3)
        assert_(-0.8 <= x[0] <= 1)
        assert_(-1 <= x[1] <= 0.8)

    def test_scalar_constraints(self):
        # Regression test for gh-2182
        x = fmin_slsqp(lambda z: z**2, [3.],
                       ieqcons=[lambda z: z[0] - 1],
                       iprint=0)
        assert_array_almost_equal(x, [1.])

        x = fmin_slsqp(lambda z: z**2, [3.],
                       f_ieqcons=lambda z: [z[0] - 1],
                       iprint=0)
        assert_array_almost_equal(x, [1.])

    def test_integer_bounds(self):
        # This should not raise an exception
        fmin_slsqp(lambda z: z**2 - 1, [0], bounds=[[0, 1]], iprint=0)

    def test_obj_must_return_scalar(self):
        # Regression test for Github Issue #5433
        # If objective function does not return a scalar, raises ValueError
        with assert_raises(ValueError):
            fmin_slsqp(lambda x: [0, 1], [1, 2, 3])

    def test_obj_returns_scalar_in_list(self):
        # Test for Github Issue #5433 and PR #6691
        # Objective function should be able to return length-1 Python list
        #  containing the scalar
        fmin_slsqp(lambda x: [0], [1, 2, 3], iprint=0)

    def test_callback(self):
        # Minimize, method='SLSQP': unbounded, approximated jacobian. Check for callback
        callback = MyCallBack()
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       method='SLSQP', callback=callback, options=self.opts)
        assert_(res['success'], res['message'])
        assert_(callback.been_called)
        assert_equal(callback.ncalls, res['nit'])

    def test_inconsistent_linearization(self):
        # SLSQP must be able to solve this problem, even if the
        # linearized problem at the starting point is infeasible.

        # Linearized constraints are
        #
        #    2*x0[0]*x[0] >= 1
        #
        # At x0 = [0, 1], the second constraint is clearly infeasible.
        # This triggers a call with n2==1 in the LSQ subroutine.
        x = [0, 1]
        f1 = lambda x: x[0] + x[1] - 2
        f2 = lambda x: x[0]**2 - 1
        sol = minimize(
            lambda x: x[0]**2 + x[1]**2,
            x,
            constraints=({'type':'eq','fun': f1},
                         {'type':'ineq','fun': f2}),
            bounds=((0,None), (0,None)),
            method='SLSQP')
        x = sol.x

        assert_allclose(f1(x), 0, atol=1e-8)
        assert_(f2(x) >= -1e-8)
        assert_(sol.success, sol)

    @pytest.mark.xfail(reason="This bug is not fixed")
    def test_regression_5743(self):
        # SLSQP must not indicate success for this problem,
        # which is infeasible.
        x = [1, 2]
        sol = minimize(
            lambda x: x[0]**2 + x[1]**2,
            x,
            constraints=({'type':'eq','fun': lambda x: x[0]+x[1]-1},
                         {'type':'ineq','fun': lambda x: x[0]-2}),
            bounds=((0,None), (0,None)),
            method='SLSQP')
        assert_(not sol.success, sol)

    def test_gh_6676(self):
        def func(x):
            return (x[0] - 1)**2 + 2*(x[1] - 1)**2 + 0.5*(x[2] - 1)**2

        sol = minimize(func, [0, 0, 0], method='SLSQP')
        assert_(sol.jac.shape == (3,))

    def test_invalid_bounds(self):
        # Raise correct error when lower bound is greater than upper bound.
        # See Github issue 6875.
        bounds_list = [
            ((1, 2), (2, 1)),
            ((2, 1), (1, 2)),
            ((2, 1), (2, 1)),
            ((np.inf, 0), (np.inf, 0)),
            ((1, -np.inf), (0, 1)),
        ]
        for bounds in bounds_list:
            with assert_raises(ValueError):
                minimize(self.fun, [-1.0, 1.0], bounds=bounds, method='SLSQP')

    def test_bounds_clipping(self):
        #
        # SLSQP returns bogus results for initial guess out of bounds, gh-6859
        #
        def f(x):
            return (x[0] - 1)**2

        sol = minimize(f, [10], method='slsqp', bounds=[(None, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', bounds=[(2, None)])
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', bounds=[(None, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', bounds=[(2, None)])
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-0.5], method='slsqp', bounds=[(-1, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', bounds=[(-1, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

    def test_infeasible_initial(self):
        # Check SLSQP behavior with infeasible initial point
        def f(x):
            x, = x
            return x*x - 2*x + 1

        cons_u = [{'type': 'ineq', 'fun': lambda x: 0 - x}]
        cons_l = [{'type': 'ineq', 'fun': lambda x: x - 2}]
        cons_ul = [{'type': 'ineq', 'fun': lambda x: 0 - x},
                   {'type': 'ineq', 'fun': lambda x: x + 1}]

        sol = minimize(f, [10], method='slsqp', constraints=cons_u)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', constraints=cons_l)
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', constraints=cons_u)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', constraints=cons_l)
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-0.5], method='slsqp', constraints=cons_ul)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', constraints=cons_ul)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)