1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
"""
Unit tests for Krylov space trust-region subproblem solver.
To run it in its simplest form::
nosetests test_optimize.py
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.optimize._trlib import (get_trlib_quadratic_subproblem)
from numpy.testing import (assert_, assert_array_equal,
assert_almost_equal,
assert_equal, assert_array_almost_equal,
assert_array_less)
KrylovQP = get_trlib_quadratic_subproblem(tol_rel_i=1e-8, tol_rel_b=1e-6)
KrylovQP_disp = get_trlib_quadratic_subproblem(tol_rel_i=1e-8, tol_rel_b=1e-6, disp=True)
class TestKrylovQuadraticSubproblem(object):
def test_for_the_easy_case(self):
# `H` is chosen such that `g` is not orthogonal to the
# eigenvector associated with the smallest eigenvalue.
H = np.array([[1.0, 0.0, 4.0],
[0.0, 2.0, 0.0],
[4.0, 0.0, 3.0]])
g = np.array([5.0, 0.0, 4.0])
# Trust Radius
trust_radius = 1.0
# Solve Subproblem
subprob = KrylovQP(x=0,
fun=lambda x: 0,
jac=lambda x: g,
hess=lambda x: None,
hessp=lambda x, y: H.dot(y))
p, hits_boundary = subprob.solve(trust_radius)
assert_array_almost_equal(p, np.array([-1.0, 0.0, 0.0]))
assert_equal(hits_boundary, True)
# check kkt satisfaction
assert_almost_equal(
np.linalg.norm(H.dot(p) + subprob.lam * p + g),
0.0)
# check trust region constraint
assert_almost_equal(np.linalg.norm(p), trust_radius)
trust_radius = 0.5
p, hits_boundary = subprob.solve(trust_radius)
assert_array_almost_equal(p,
np.array([-0.46125446, 0., -0.19298788]))
assert_equal(hits_boundary, True)
# check kkt satisfaction
assert_almost_equal(
np.linalg.norm(H.dot(p) + subprob.lam * p + g),
0.0)
# check trust region constraint
assert_almost_equal(np.linalg.norm(p), trust_radius)
def test_for_the_hard_case(self):
# `H` is chosen such that `g` is orthogonal to the
# eigenvector associated with the smallest eigenvalue.
H = np.array([[1.0, 0.0, 4.0],
[0.0, 2.0, 0.0],
[4.0, 0.0, 3.0]])
g = np.array([0.0, 2.0, 0.0])
# Trust Radius
trust_radius = 1.0
# Solve Subproblem
subprob = KrylovQP(x=0,
fun=lambda x: 0,
jac=lambda x: g,
hess=lambda x: None,
hessp=lambda x, y: H.dot(y))
p, hits_boundary = subprob.solve(trust_radius)
assert_array_almost_equal(p, np.array([0.0, -1.0, 0.0]))
# check kkt satisfaction
assert_almost_equal(
np.linalg.norm(H.dot(p) + subprob.lam * p + g),
0.0)
# check trust region constraint
assert_almost_equal(np.linalg.norm(p), trust_radius)
trust_radius = 0.5
p, hits_boundary = subprob.solve(trust_radius)
assert_array_almost_equal(p, np.array([0.0, -0.5, 0.0]))
# check kkt satisfaction
assert_almost_equal(
np.linalg.norm(H.dot(p) + subprob.lam * p + g),
0.0)
# check trust region constraint
assert_almost_equal(np.linalg.norm(p), trust_radius)
def test_for_interior_convergence(self):
H = np.array([[1.812159, 0.82687265, 0.21838879, -0.52487006, 0.25436988],
[0.82687265, 2.66380283, 0.31508988, -0.40144163, 0.08811588],
[0.21838879, 0.31508988, 2.38020726, -0.3166346, 0.27363867],
[-0.52487006, -0.40144163, -0.3166346, 1.61927182, -0.42140166],
[0.25436988, 0.08811588, 0.27363867, -0.42140166, 1.33243101]])
g = np.array([0.75798952, 0.01421945, 0.33847612, 0.83725004, -0.47909534])
trust_radius = 1.1
# Solve Subproblem
subprob = KrylovQP(x=0,
fun=lambda x: 0,
jac=lambda x: g,
hess=lambda x: None,
hessp=lambda x, y: H.dot(y))
p, hits_boundary = subprob.solve(trust_radius)
# check kkt satisfaction
assert_almost_equal(
np.linalg.norm(H.dot(p) + subprob.lam * p + g),
0.0)
assert_array_almost_equal(p, [-0.68585435, 0.1222621, -0.22090999,
-0.67005053, 0.31586769])
assert_array_almost_equal(hits_boundary, False)
def test_for_very_close_to_zero(self):
H = np.array([[0.88547534, 2.90692271, 0.98440885, -0.78911503, -0.28035809],
[2.90692271, -0.04618819, 0.32867263, -0.83737945, 0.17116396],
[0.98440885, 0.32867263, -0.87355957, -0.06521957, -1.43030957],
[-0.78911503, -0.83737945, -0.06521957, -1.645709, -0.33887298],
[-0.28035809, 0.17116396, -1.43030957, -0.33887298, -1.68586978]])
g = np.array([0, 0, 0, 0, 1e-6])
trust_radius = 1.1
# Solve Subproblem
subprob = KrylovQP(x=0,
fun=lambda x: 0,
jac=lambda x: g,
hess=lambda x: None,
hessp=lambda x, y: H.dot(y))
p, hits_boundary = subprob.solve(trust_radius)
# check kkt satisfaction
assert_almost_equal(
np.linalg.norm(H.dot(p) + subprob.lam * p + g),
0.0)
# check trust region constraint
assert_almost_equal(np.linalg.norm(p), trust_radius)
assert_array_almost_equal(p, [0.06910534, -0.01432721,
-0.65311947, -0.23815972,
-0.84954934])
assert_array_almost_equal(hits_boundary, True)
def test_disp(self, capsys):
H = -np.eye(5)
g = np.array([0, 0, 0, 0, 1e-6])
trust_radius = 1.1
subprob = KrylovQP_disp(x=0,
fun=lambda x: 0,
jac=lambda x: g,
hess=lambda x: None,
hessp=lambda x, y: H.dot(y))
p, hits_boundary = subprob.solve(trust_radius)
out, err = capsys.readouterr()
assert_(out.startswith(' TR Solving trust region problem'), repr(out))
|