1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
from __future__ import division, print_function, absolute_import
from math import sqrt, exp, sin, cos
from numpy.testing import (assert_warns, assert_,
assert_allclose,
assert_equal)
from numpy import finfo
from scipy.optimize import zeros as cc
from scipy.optimize import zeros
# Import testing parameters
from scipy.optimize._tstutils import functions, fstrings
class TestBasic(object):
def run_check(self, method, name):
a = .5
b = sqrt(3)
xtol = 4*finfo(float).eps
rtol = 4*finfo(float).eps
for function, fname in zip(functions, fstrings):
zero, r = method(function, a, b, xtol=xtol, rtol=rtol,
full_output=True)
assert_(r.converged)
assert_allclose(zero, 1.0, atol=xtol, rtol=rtol,
err_msg='method %s, function %s' % (name, fname))
def test_bisect(self):
self.run_check(cc.bisect, 'bisect')
def test_ridder(self):
self.run_check(cc.ridder, 'ridder')
def test_brentq(self):
self.run_check(cc.brentq, 'brentq')
def test_brenth(self):
self.run_check(cc.brenth, 'brenth')
def test_newton(self):
f1 = lambda x: x**2 - 2*x - 1
f1_1 = lambda x: 2*x - 2
f1_2 = lambda x: 2.0 + 0*x
f2 = lambda x: exp(x) - cos(x)
f2_1 = lambda x: exp(x) + sin(x)
f2_2 = lambda x: exp(x) + cos(x)
for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
x = zeros.newton(f, 3, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6)
assert_allclose(f(x), 0, atol=1e-6)
def test_deriv_zero_warning(self):
func = lambda x: x**2
dfunc = lambda x: 2*x
assert_warns(RuntimeWarning, cc.newton, func, 0.0, dfunc)
def test_gh_5555():
root = 0.1
def f(x):
return x - root
methods = [cc.bisect, cc.ridder]
xtol = 4*finfo(float).eps
rtol = 4*finfo(float).eps
for method in methods:
res = method(f, -1e8, 1e7, xtol=xtol, rtol=rtol)
assert_allclose(root, res, atol=xtol, rtol=rtol,
err_msg='method %s' % method.__name__)
def test_gh_5557():
# Show that without the changes in 5557 brentq and brenth might
# only achieve a tolerance of 2*(xtol + rtol*|res|).
# f linearly interpolates (0, -0.1), (0.5, -0.1), and (1,
# 0.4). The important parts are that |f(0)| < |f(1)| (so that
# brent takes 0 as the initial guess), |f(0)| < atol (so that
# brent accepts 0 as the root), and that the exact root of f lies
# more than atol away from 0 (so that brent doesn't achieve the
# desired tolerance).
def f(x):
if x < 0.5:
return -0.1
else:
return x - 0.6
atol = 0.51
rtol = 4*finfo(float).eps
methods = [cc.brentq, cc.brenth]
for method in methods:
res = method(f, 0, 1, xtol=atol, rtol=rtol)
assert_allclose(0.6, res, atol=atol, rtol=rtol)
class TestRootResults:
def test_repr(self):
r = zeros.RootResults(root=1.0,
iterations=44,
function_calls=46,
flag=0)
expected_repr = (" converged: True\n flag: 'converged'"
"\n function_calls: 46\n iterations: 44\n"
" root: 1.0")
assert_equal(repr(r), expected_repr)
def test_complex_halley():
"""Test Halley's works with complex roots"""
def f(x, *a):
return a[0] * x**2 + a[1] * x + a[2]
def f_1(x, *a):
return 2 * a[0] * x + a[1]
def f_2(x, *a):
return 2 * a[0]
z = complex(1.0, 2.0)
coeffs = (2.0, 3.0, 4.0)
y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
# (-0.75000000000000078+1.1989578808281789j)
assert_allclose(f(y, *coeffs), 0, atol=1e-6)
|