File: _upfirdn_apply.pyx

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (251 lines) | stat: -rw-r--r-- 8,982 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# -*- coding: utf-8 -*-

# Code adapted from "upfirdn" python library with permission:
#
# Copyright (c) 2009, Motorola, Inc
#
# All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Motorola nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import absolute_import

cimport cython
cimport numpy as np
import numpy as np
from cython import bint  # boolean integer type
from libc.stdlib cimport malloc, free


ctypedef double complex double_complex
ctypedef float complex float_complex

ctypedef fused DTYPE_t:
    # Eventually we could add "object", too, but then we'd lose the "nogil"
    # on the _apply_impl function.
    float
    float_complex
    double
    double_complex

cdef struct ArrayInfo:
    np.intp_t * shape
    np.intp_t * strides
    np.intp_t ndim


def _output_len(np.intp_t len_h,
                np.intp_t in_len,
                np.intp_t up,
                np.intp_t down):
    """The output length that results from a given input"""
    cdef np.intp_t nt
    cdef np.intp_t in_len_copy
    in_len_copy = in_len + (len_h + (-len_h % up)) // up - 1
    nt = in_len_copy * up
    cdef np.intp_t need = nt // down
    if nt % down > 0:
        need += 1
    return need


def _apply(np.ndarray data, DTYPE_t [::1] h_trans_flip, np.ndarray out,
           np.intp_t up, np.intp_t down, np.intp_t axis):
    cdef ArrayInfo data_info, output_info
    cdef np.intp_t len_h = h_trans_flip.size
    cdef DTYPE_t *data_ptr
    cdef DTYPE_t *filter_ptr
    cdef DTYPE_t *out_ptr
    cdef int retval

    data_info.ndim = data.ndim
    data_info.strides = <np.intp_t *> data.strides
    data_info.shape = <np.intp_t *> data.shape

    output_info.ndim = out.ndim
    output_info.strides = <np.intp_t *> out.strides
    output_info.shape = <np.intp_t *> out.shape

    data_ptr = <DTYPE_t*> data.data
    filter_ptr = <DTYPE_t*> &h_trans_flip[0]
    out_ptr = <DTYPE_t*> out.data

    with nogil:
        retval = _apply_axis_inner(data_ptr, data_info,
                                   filter_ptr, len_h,
                                   out_ptr, output_info,
                                   up, down, axis)
    if retval == 1:
        raise ValueError("failure in _apply_axis_inner: data and output arrays"
                         " must have the same number of dimensions.")
    elif retval == 2:
        raise ValueError(
            ("failure in _apply_axis_inner: axis = {}, ".format(axis) +
             "but data_info.ndim is only {}.".format(data_info.ndim)))
    elif retval == 3 or retval == 4:
        raise MemoryError()
    return out


@cython.cdivision(True)
cdef int _apply_axis_inner(DTYPE_t* data, ArrayInfo data_info,
                           DTYPE_t* h_trans_flip, np.intp_t len_h,
                           DTYPE_t* output, ArrayInfo output_info,
                           np.intp_t up, np.intp_t down,
                           np.intp_t axis) nogil:
    cdef np.intp_t i
    cdef np.intp_t num_loops = 1
    cdef bint make_temp_data, make_temp_output
    cdef DTYPE_t* temp_data = NULL
    cdef DTYPE_t* temp_output = NULL

    if data_info.ndim != output_info.ndim:
        return 1
    if axis >= data_info.ndim:
        return 2

    make_temp_data = data_info.strides[axis] != sizeof(DTYPE_t);
    make_temp_output = output_info.strides[axis] != sizeof(DTYPE_t);
    if make_temp_data:
        temp_data = <DTYPE_t*>malloc(data_info.shape[axis] * sizeof(DTYPE_t))
        if not temp_data:
            free(temp_data)
            return 3
    if make_temp_output:
        temp_output = <DTYPE_t*>malloc(output_info.shape[axis] * sizeof(DTYPE_t))
        if not temp_output:
            free(temp_data)
            free(temp_output)
            return 4

    for i in range(output_info.ndim):
        if i != axis:
            num_loops *= output_info.shape[i]

    cdef np.intp_t j
    cdef np.intp_t data_offset
    cdef np.intp_t output_offset
    cdef DTYPE_t* data_row
    cdef DTYPE_t* output_row
    cdef np.intp_t reduced_idx
    cdef np.intp_t j_rev
    cdef np.intp_t axis_idx
    cdef DTYPE_t* tmp_ptr = NULL
    for i in range(num_loops):
        data_offset = 0
        output_offset = 0
        # Calculate offset into linear buffer
        reduced_idx = i
        for j in range(output_info.ndim):
            j_rev = output_info.ndim - 1 - j
            if j_rev != axis:
                axis_idx = reduced_idx % output_info.shape[j_rev]
                reduced_idx /= output_info.shape[j_rev]
                data_offset += (axis_idx * data_info.strides[j_rev])
                output_offset += (axis_idx * output_info.strides[j_rev])

        # Copy to temporary data if necessary
        if make_temp_data:
            for j in range(data_info.shape[axis]):
                # Offsets are byte offsets, to need to cast to char and back
                tmp_ptr = <DTYPE_t *>((<char *> data) + data_offset +
                    j * data_info.strides[axis])
                temp_data[j] = tmp_ptr[0]

        # Select temporary or direct output and data
        if make_temp_data:
            data_row = temp_data
        else:
            data_row = <DTYPE_t *>((<char *>data) + data_offset)
        if make_temp_output:
            output_row = temp_output
            for j in range(output_info.shape[axis]):
                output_row[j] = 0.0  # initialize as zeros
        else:
            output_row = <DTYPE_t *>((<char *>output) + output_offset)

        # call 1D upfirdn
        _apply_impl(data_row, data_info.shape[axis],
                    h_trans_flip, len_h, output_row, up, down)

        # Copy from temporary output if necessary
        if make_temp_output:
            for j in range(output_info.shape[axis]):
                # Offsets are byte offsets, to need to cast to char and back
                tmp_ptr = <DTYPE_t *>((<char *>output) + output_offset +
                    j * output_info.strides[axis])
                tmp_ptr[0] = output_row[j]

    # cleanup
    free(temp_data)
    free(temp_output)
    return 0


@cython.cdivision(True)  # faster modulo
@cython.boundscheck(False)  # designed to stay within bounds
@cython.wraparound(False)  # we don't use negative indexing
cdef void _apply_impl(DTYPE_t *x, np.intp_t len_x, DTYPE_t *h_trans_flip,
                      np.intp_t len_h, DTYPE_t *out,
                      np.intp_t up, np.intp_t down) nogil:
    cdef np.intp_t h_per_phase = len_h / up
    cdef np.intp_t padded_len = len_x + h_per_phase - 1
    cdef np.intp_t x_idx = 0
    cdef np.intp_t y_idx = 0
    cdef np.intp_t h_idx = 0
    cdef np.intp_t t = 0
    cdef np.intp_t x_conv_idx = 0

    while x_idx < len_x:
        h_idx = t * h_per_phase
        x_conv_idx = x_idx - h_per_phase + 1
        if x_conv_idx < 0:
            h_idx -= x_conv_idx
            x_conv_idx = 0
        for x_conv_idx in range(x_conv_idx, x_idx + 1):
            out[y_idx] = out[y_idx] + x[x_conv_idx] * h_trans_flip[h_idx]
            h_idx += 1
        # store and increment
        y_idx += 1
        t += down
        x_idx += t / up  # integer div
        # which phase of the filter to use
        t = t % up

    # Use a second simplified loop to flush out the last bits
    while x_idx < padded_len:
        h_idx = t * h_per_phase
        x_conv_idx = x_idx - h_per_phase + 1
        for x_conv_idx in range(x_conv_idx, x_idx + 1):
            if x_conv_idx < len_x and x_conv_idx >= 0:
                out[y_idx] = out[y_idx] + x[x_conv_idx] * h_trans_flip[h_idx]
            h_idx += 1
        y_idx += 1
        t += down
        x_idx += t / up  # integer div
        t = t % up