1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
# -*- coding: utf-8 -*-
# Code adapted from "upfirdn" python library with permission:
#
# Copyright (c) 2009, Motorola, Inc
#
# All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Motorola nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import absolute_import
cimport cython
cimport numpy as np
import numpy as np
from cython import bint # boolean integer type
from libc.stdlib cimport malloc, free
ctypedef double complex double_complex
ctypedef float complex float_complex
ctypedef fused DTYPE_t:
# Eventually we could add "object", too, but then we'd lose the "nogil"
# on the _apply_impl function.
float
float_complex
double
double_complex
cdef struct ArrayInfo:
np.intp_t * shape
np.intp_t * strides
np.intp_t ndim
def _output_len(np.intp_t len_h,
np.intp_t in_len,
np.intp_t up,
np.intp_t down):
"""The output length that results from a given input"""
cdef np.intp_t nt
cdef np.intp_t in_len_copy
in_len_copy = in_len + (len_h + (-len_h % up)) // up - 1
nt = in_len_copy * up
cdef np.intp_t need = nt // down
if nt % down > 0:
need += 1
return need
def _apply(np.ndarray data, DTYPE_t [::1] h_trans_flip, np.ndarray out,
np.intp_t up, np.intp_t down, np.intp_t axis):
cdef ArrayInfo data_info, output_info
cdef np.intp_t len_h = h_trans_flip.size
cdef DTYPE_t *data_ptr
cdef DTYPE_t *filter_ptr
cdef DTYPE_t *out_ptr
cdef int retval
data_info.ndim = data.ndim
data_info.strides = <np.intp_t *> data.strides
data_info.shape = <np.intp_t *> data.shape
output_info.ndim = out.ndim
output_info.strides = <np.intp_t *> out.strides
output_info.shape = <np.intp_t *> out.shape
data_ptr = <DTYPE_t*> data.data
filter_ptr = <DTYPE_t*> &h_trans_flip[0]
out_ptr = <DTYPE_t*> out.data
with nogil:
retval = _apply_axis_inner(data_ptr, data_info,
filter_ptr, len_h,
out_ptr, output_info,
up, down, axis)
if retval == 1:
raise ValueError("failure in _apply_axis_inner: data and output arrays"
" must have the same number of dimensions.")
elif retval == 2:
raise ValueError(
("failure in _apply_axis_inner: axis = {}, ".format(axis) +
"but data_info.ndim is only {}.".format(data_info.ndim)))
elif retval == 3 or retval == 4:
raise MemoryError()
return out
@cython.cdivision(True)
cdef int _apply_axis_inner(DTYPE_t* data, ArrayInfo data_info,
DTYPE_t* h_trans_flip, np.intp_t len_h,
DTYPE_t* output, ArrayInfo output_info,
np.intp_t up, np.intp_t down,
np.intp_t axis) nogil:
cdef np.intp_t i
cdef np.intp_t num_loops = 1
cdef bint make_temp_data, make_temp_output
cdef DTYPE_t* temp_data = NULL
cdef DTYPE_t* temp_output = NULL
if data_info.ndim != output_info.ndim:
return 1
if axis >= data_info.ndim:
return 2
make_temp_data = data_info.strides[axis] != sizeof(DTYPE_t);
make_temp_output = output_info.strides[axis] != sizeof(DTYPE_t);
if make_temp_data:
temp_data = <DTYPE_t*>malloc(data_info.shape[axis] * sizeof(DTYPE_t))
if not temp_data:
free(temp_data)
return 3
if make_temp_output:
temp_output = <DTYPE_t*>malloc(output_info.shape[axis] * sizeof(DTYPE_t))
if not temp_output:
free(temp_data)
free(temp_output)
return 4
for i in range(output_info.ndim):
if i != axis:
num_loops *= output_info.shape[i]
cdef np.intp_t j
cdef np.intp_t data_offset
cdef np.intp_t output_offset
cdef DTYPE_t* data_row
cdef DTYPE_t* output_row
cdef np.intp_t reduced_idx
cdef np.intp_t j_rev
cdef np.intp_t axis_idx
cdef DTYPE_t* tmp_ptr = NULL
for i in range(num_loops):
data_offset = 0
output_offset = 0
# Calculate offset into linear buffer
reduced_idx = i
for j in range(output_info.ndim):
j_rev = output_info.ndim - 1 - j
if j_rev != axis:
axis_idx = reduced_idx % output_info.shape[j_rev]
reduced_idx /= output_info.shape[j_rev]
data_offset += (axis_idx * data_info.strides[j_rev])
output_offset += (axis_idx * output_info.strides[j_rev])
# Copy to temporary data if necessary
if make_temp_data:
for j in range(data_info.shape[axis]):
# Offsets are byte offsets, to need to cast to char and back
tmp_ptr = <DTYPE_t *>((<char *> data) + data_offset +
j * data_info.strides[axis])
temp_data[j] = tmp_ptr[0]
# Select temporary or direct output and data
if make_temp_data:
data_row = temp_data
else:
data_row = <DTYPE_t *>((<char *>data) + data_offset)
if make_temp_output:
output_row = temp_output
for j in range(output_info.shape[axis]):
output_row[j] = 0.0 # initialize as zeros
else:
output_row = <DTYPE_t *>((<char *>output) + output_offset)
# call 1D upfirdn
_apply_impl(data_row, data_info.shape[axis],
h_trans_flip, len_h, output_row, up, down)
# Copy from temporary output if necessary
if make_temp_output:
for j in range(output_info.shape[axis]):
# Offsets are byte offsets, to need to cast to char and back
tmp_ptr = <DTYPE_t *>((<char *>output) + output_offset +
j * output_info.strides[axis])
tmp_ptr[0] = output_row[j]
# cleanup
free(temp_data)
free(temp_output)
return 0
@cython.cdivision(True) # faster modulo
@cython.boundscheck(False) # designed to stay within bounds
@cython.wraparound(False) # we don't use negative indexing
cdef void _apply_impl(DTYPE_t *x, np.intp_t len_x, DTYPE_t *h_trans_flip,
np.intp_t len_h, DTYPE_t *out,
np.intp_t up, np.intp_t down) nogil:
cdef np.intp_t h_per_phase = len_h / up
cdef np.intp_t padded_len = len_x + h_per_phase - 1
cdef np.intp_t x_idx = 0
cdef np.intp_t y_idx = 0
cdef np.intp_t h_idx = 0
cdef np.intp_t t = 0
cdef np.intp_t x_conv_idx = 0
while x_idx < len_x:
h_idx = t * h_per_phase
x_conv_idx = x_idx - h_per_phase + 1
if x_conv_idx < 0:
h_idx -= x_conv_idx
x_conv_idx = 0
for x_conv_idx in range(x_conv_idx, x_idx + 1):
out[y_idx] = out[y_idx] + x[x_conv_idx] * h_trans_flip[h_idx]
h_idx += 1
# store and increment
y_idx += 1
t += down
x_idx += t / up # integer div
# which phase of the filter to use
t = t % up
# Use a second simplified loop to flush out the last bits
while x_idx < padded_len:
h_idx = t * h_per_phase
x_conv_idx = x_idx - h_per_phase + 1
for x_conv_idx in range(x_conv_idx, x_idx + 1):
if x_conv_idx < len_x and x_conv_idx >= 0:
out[y_idx] = out[y_idx] + x[x_conv_idx] * h_trans_flip[h_idx]
h_idx += 1
y_idx += 1
t += down
x_idx += t / up # integer div
t = t % up
|