File: fir_filter_design.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (1144 lines) | stat: -rw-r--r-- 41,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
# -*- coding: utf-8 -*-
"""Functions for FIR filter design."""
from __future__ import division, print_function, absolute_import

from math import ceil, log
import warnings

import numpy as np
from numpy.fft import irfft, fft, ifft
from scipy.special import sinc
from scipy.linalg import toeplitz, hankel, pinv
from scipy._lib.six import string_types

from . import sigtools

__all__ = ['kaiser_beta', 'kaiser_atten', 'kaiserord',
           'firwin', 'firwin2', 'remez', 'firls', 'minimum_phase']


def _get_fs(fs, nyq):
    """
    Utility for replacing the argument 'nyq' (with default 1) with 'fs'.
    """
    if nyq is None and fs is None:
        fs = 2
    elif nyq is not None:
        if fs is not None:
            raise ValueError("Values cannot be given for both 'nyq' and 'fs'.")
        fs = 2*nyq
    return fs


# Some notes on function parameters:
#
# `cutoff` and `width` are given as numbers between 0 and 1.  These are
# relative frequencies, expressed as a fraction of the Nyquist frequency.
# For example, if the Nyquist frequency is 2 KHz, then width=0.15 is a width
# of 300 Hz.
#
# The `order` of a FIR filter is one less than the number of taps.
# This is a potential source of confusion, so in the following code,
# we will always use the number of taps as the parameterization of
# the 'size' of the filter. The "number of taps" means the number
# of coefficients, which is the same as the length of the impulse
# response of the filter.


def kaiser_beta(a):
    """Compute the Kaiser parameter `beta`, given the attenuation `a`.

    Parameters
    ----------
    a : float
        The desired attenuation in the stopband and maximum ripple in
        the passband, in dB.  This should be a *positive* number.

    Returns
    -------
    beta : float
        The `beta` parameter to be used in the formula for a Kaiser window.

    References
    ----------
    Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.

    Examples
    --------
    Suppose we want to design a lowpass filter, with 65 dB attenuation
    in the stop band.  The Kaiser window parameter to be used in the
    window method is computed by `kaiser_beta(65)`:

    >>> from scipy.signal import kaiser_beta
    >>> kaiser_beta(65)
    6.20426

    """
    if a > 50:
        beta = 0.1102 * (a - 8.7)
    elif a > 21:
        beta = 0.5842 * (a - 21) ** 0.4 + 0.07886 * (a - 21)
    else:
        beta = 0.0
    return beta


def kaiser_atten(numtaps, width):
    """Compute the attenuation of a Kaiser FIR filter.

    Given the number of taps `N` and the transition width `width`, compute the
    attenuation `a` in dB, given by Kaiser's formula:

        a = 2.285 * (N - 1) * pi * width + 7.95

    Parameters
    ----------
    numtaps : int
        The number of taps in the FIR filter.
    width : float
        The desired width of the transition region between passband and
        stopband (or, in general, at any discontinuity) for the filter,
        expressed as a fraction of the Nyquist frequency.

    Returns
    -------
    a : float
        The attenuation of the ripple, in dB.

    See Also
    --------
    kaiserord, kaiser_beta

    Examples
    --------
    Suppose we want to design a FIR filter using the Kaiser window method
    that will have 211 taps and a transition width of 9 Hz for a signal that
    is sampled at 480 Hz.  Expressed as a fraction of the Nyquist frequency,
    the width is 9/(0.5*480) = 0.0375.  The approximate attenuation (in dB)
    is computed as follows:

    >>> from scipy.signal import kaiser_atten
    >>> kaiser_atten(211, 0.0375)
    64.48099630593983

    """
    a = 2.285 * (numtaps - 1) * np.pi * width + 7.95
    return a


def kaiserord(ripple, width):
    """
    Determine the filter window parameters for the Kaiser window method.

    The parameters returned by this function are generally used to create
    a finite impulse response filter using the window method, with either
    `firwin` or `firwin2`.

    Parameters
    ----------
    ripple : float
        Upper bound for the deviation (in dB) of the magnitude of the
        filter's frequency response from that of the desired filter (not
        including frequencies in any transition intervals).  That is, if w
        is the frequency expressed as a fraction of the Nyquist frequency,
        A(w) is the actual frequency response of the filter and D(w) is the
        desired frequency response, the design requirement is that::

            abs(A(w) - D(w))) < 10**(-ripple/20)

        for 0 <= w <= 1 and w not in a transition interval.
    width : float
        Width of transition region, normalized so that 1 corresponds to pi
        radians / sample.  That is, the frequency is expressed as a fraction
        of the Nyquist frequency.

    Returns
    -------
    numtaps : int
        The length of the Kaiser window.
    beta : float
        The beta parameter for the Kaiser window.

    See Also
    --------
    kaiser_beta, kaiser_atten

    Notes
    -----
    There are several ways to obtain the Kaiser window:

    - ``signal.kaiser(numtaps, beta, sym=True)``
    - ``signal.get_window(beta, numtaps)``
    - ``signal.get_window(('kaiser', beta), numtaps)``

    The empirical equations discovered by Kaiser are used.

    References
    ----------
    Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.

    Examples
    --------
    We will use the Kaiser window method to design a lowpass FIR filter
    for a signal that is sampled at 1000 Hz.

    We want at least 65 dB rejection in the stop band, and in the pass
    band the gain should vary no more than 0.5%.

    We want a cutoff frequency of 175 Hz, with a transition between the
    pass band and the stop band of 24 Hz.  That is, in the band [0, 163],
    the gain varies no more than 0.5%, and in the band [187, 500], the
    signal is attenuated by at least 65 dB.

    >>> from scipy.signal import kaiserord, firwin, freqz
    >>> import matplotlib.pyplot as plt
    >>> fs = 1000.0
    >>> cutoff = 175
    >>> width = 24

    The Kaiser method accepts just a single parameter to control the pass
    band ripple and the stop band rejection, so we use the more restrictive
    of the two.  In this case, the pass band ripple is 0.005, or 46.02 dB,
    so we will use 65 dB as the design parameter.

    Use `kaiserord` to determine the length of the filter and the
    parameter for the Kaiser window.

    >>> numtaps, beta = kaiserord(65, width/(0.5*fs))
    >>> numtaps
    167
    >>> beta
    6.20426

    Use `firwin` to create the FIR filter.

    >>> taps = firwin(numtaps, cutoff, window=('kaiser', beta),
    ...               scale=False, nyq=0.5*fs)

    Compute the frequency response of the filter.  ``w`` is the array of
    frequencies, and ``h`` is the corresponding complex array of frequency
    responses.

    >>> w, h = freqz(taps, worN=8000)
    >>> w *= 0.5*fs/np.pi  # Convert w to Hz.

    Compute the deviation of the magnitude of the filter's response from
    that of the ideal lowpass filter.  Values in the transition region are
    set to ``nan``, so they won't appear in the plot.

    >>> ideal = w < cutoff  # The "ideal" frequency response.
    >>> deviation = np.abs(np.abs(h) - ideal)
    >>> deviation[(w > cutoff - 0.5*width) & (w < cutoff + 0.5*width)] = np.nan

    Plot the deviation.  A close look at the left end of the stop band shows
    that the requirement for 65 dB attenuation is violated in the first lobe
    by about 0.125 dB.  This is not unusual for the Kaiser window method.

    >>> plt.plot(w, 20*np.log10(np.abs(deviation)))
    >>> plt.xlim(0, 0.5*fs)
    >>> plt.ylim(-90, -60)
    >>> plt.grid(alpha=0.25)
    >>> plt.axhline(-65, color='r', ls='--', alpha=0.3)
    >>> plt.xlabel('Frequency (Hz)')
    >>> plt.ylabel('Deviation from ideal (dB)')
    >>> plt.title('Lowpass Filter Frequency Response')
    >>> plt.show()

    """
    A = abs(ripple)  # in case somebody is confused as to what's meant
    if A < 8:
        # Formula for N is not valid in this range.
        raise ValueError("Requested maximum ripple attentuation %f is too "
                         "small for the Kaiser formula." % A)
    beta = kaiser_beta(A)

    # Kaiser's formula (as given in Oppenheim and Schafer) is for the filter
    # order, so we have to add 1 to get the number of taps.
    numtaps = (A - 7.95) / 2.285 / (np.pi * width) + 1

    return int(ceil(numtaps)), beta


def firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True,
           scale=True, nyq=None, fs=None):
    """
    FIR filter design using the window method.

    This function computes the coefficients of a finite impulse response
    filter.  The filter will have linear phase; it will be Type I if
    `numtaps` is odd and Type II if `numtaps` is even.

    Type II filters always have zero response at the Nyquist frequency, so a
    ValueError exception is raised if firwin is called with `numtaps` even and
    having a passband whose right end is at the Nyquist frequency.

    Parameters
    ----------
    numtaps : int
        Length of the filter (number of coefficients, i.e. the filter
        order + 1).  `numtaps` must be even if a passband includes the
        Nyquist frequency.
    cutoff : float or 1D array_like
        Cutoff frequency of filter (expressed in the same units as `nyq`)
        OR an array of cutoff frequencies (that is, band edges). In the
        latter case, the frequencies in `cutoff` should be positive and
        monotonically increasing between 0 and `nyq`.  The values 0 and
        `nyq` must not be included in `cutoff`.
    width : float or None, optional
        If `width` is not None, then assume it is the approximate width
        of the transition region (expressed in the same units as `nyq`)
        for use in Kaiser FIR filter design.  In this case, the `window`
        argument is ignored.
    window : string or tuple of string and parameter values, optional
        Desired window to use. See `scipy.signal.get_window` for a list
        of windows and required parameters.
    pass_zero : bool, optional
        If True, the gain at the frequency 0 (i.e. the "DC gain") is 1.
        Otherwise the DC gain is 0.
    scale : bool, optional
        Set to True to scale the coefficients so that the frequency
        response is exactly unity at a certain frequency.
        That frequency is either:

        - 0 (DC) if the first passband starts at 0 (i.e. pass_zero
          is True)
        - `nyq` (the Nyquist frequency) if the first passband ends at
          `nyq` (i.e the filter is a single band highpass filter);
          center of first passband otherwise

    nyq : float, optional
        *Deprecated.  Use `fs` instead.*  This is the Nyquist frequency.
        Each frequency in `cutoff` must be between 0 and `nyq`. Default
        is 1.
    fs : float, optional
        The sampling frequency of the signal.  Each frequency in `cutoff`
        must be between 0 and ``fs/2``.  Default is 2.

    Returns
    -------
    h : (numtaps,) ndarray
        Coefficients of length `numtaps` FIR filter.

    Raises
    ------
    ValueError
        If any value in `cutoff` is less than or equal to 0 or greater
        than or equal to ``fs/2``, if the values in `cutoff` are not strictly
        monotonically increasing, or if `numtaps` is even but a passband
        includes the Nyquist frequency.

    See Also
    --------
    firwin2
    firls
    minimum_phase
    remez

    Examples
    --------
    Low-pass from 0 to f:

    >>> from scipy import signal
    >>> numtaps = 3
    >>> f = 0.1
    >>> signal.firwin(numtaps, f)
    array([ 0.06799017,  0.86401967,  0.06799017])

    Use a specific window function:

    >>> signal.firwin(numtaps, f, window='nuttall')
    array([  3.56607041e-04,   9.99286786e-01,   3.56607041e-04])

    High-pass ('stop' from 0 to f):

    >>> signal.firwin(numtaps, f, pass_zero=False)
    array([-0.00859313,  0.98281375, -0.00859313])

    Band-pass:

    >>> f1, f2 = 0.1, 0.2
    >>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
    array([ 0.06301614,  0.88770441,  0.06301614])

    Band-stop:

    >>> signal.firwin(numtaps, [f1, f2])
    array([-0.00801395,  1.0160279 , -0.00801395])

    Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):

    >>> f3, f4 = 0.3, 0.4
    >>> signal.firwin(numtaps, [f1, f2, f3, f4])
    array([-0.01376344,  1.02752689, -0.01376344])

    Multi-band (passbands are [f1, f2] and [f3,f4]):

    >>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
    array([ 0.04890915,  0.91284326,  0.04890915])

    """
    # The major enhancements to this function added in November 2010 were
    # developed by Tom Krauss (see ticket #902).

    nyq = 0.5 * _get_fs(fs, nyq)

    cutoff = np.atleast_1d(cutoff) / float(nyq)

    # Check for invalid input.
    if cutoff.ndim > 1:
        raise ValueError("The cutoff argument must be at most "
                         "one-dimensional.")
    if cutoff.size == 0:
        raise ValueError("At least one cutoff frequency must be given.")
    if cutoff.min() <= 0 or cutoff.max() >= 1:
        raise ValueError("Invalid cutoff frequency: frequencies must be "
                         "greater than 0 and less than fs/2.")
    if np.any(np.diff(cutoff) <= 0):
        raise ValueError("Invalid cutoff frequencies: the frequencies "
                         "must be strictly increasing.")

    if width is not None:
        # A width was given.  Find the beta parameter of the Kaiser window
        # and set `window`.  This overrides the value of `window` passed in.
        atten = kaiser_atten(numtaps, float(width) / nyq)
        beta = kaiser_beta(atten)
        window = ('kaiser', beta)

    pass_nyquist = bool(cutoff.size & 1) ^ pass_zero
    if pass_nyquist and numtaps % 2 == 0:
        raise ValueError("A filter with an even number of coefficients must "
                         "have zero response at the Nyquist frequency.")

    # Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff
    # is even, and each pair in cutoff corresponds to passband.
    cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist))

    # `bands` is a 2D array; each row gives the left and right edges of
    # a passband.
    bands = cutoff.reshape(-1, 2)

    # Build up the coefficients.
    alpha = 0.5 * (numtaps - 1)
    m = np.arange(0, numtaps) - alpha
    h = 0
    for left, right in bands:
        h += right * sinc(right * m)
        h -= left * sinc(left * m)

    # Get and apply the window function.
    from .signaltools import get_window
    win = get_window(window, numtaps, fftbins=False)
    h *= win

    # Now handle scaling if desired.
    if scale:
        # Get the first passband.
        left, right = bands[0]
        if left == 0:
            scale_frequency = 0.0
        elif right == 1:
            scale_frequency = 1.0
        else:
            scale_frequency = 0.5 * (left + right)
        c = np.cos(np.pi * m * scale_frequency)
        s = np.sum(h * c)
        h /= s

    return h


# Original version of firwin2 from scipy ticket #457, submitted by "tash".
#
# Rewritten by Warren Weckesser, 2010.

def firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=None,
            antisymmetric=False, fs=None):
    """
    FIR filter design using the window method.

    From the given frequencies `freq` and corresponding gains `gain`,
    this function constructs an FIR filter with linear phase and
    (approximately) the given frequency response.

    Parameters
    ----------
    numtaps : int
        The number of taps in the FIR filter.  `numtaps` must be less than
        `nfreqs`.
    freq : array_like, 1D
        The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being
        Nyquist.  The Nyquist frequency is half `fs`.
        The values in `freq` must be nondecreasing.  A value can be repeated
        once to implement a discontinuity.  The first value in `freq` must
        be 0, and the last value must be ``fs/2``.
    gain : array_like
        The filter gains at the frequency sampling points. Certain
        constraints to gain values, depending on the filter type, are applied,
        see Notes for details.
    nfreqs : int, optional
        The size of the interpolation mesh used to construct the filter.
        For most efficient behavior, this should be a power of 2 plus 1
        (e.g, 129, 257, etc).  The default is one more than the smallest
        power of 2 that is not less than `numtaps`.  `nfreqs` must be greater
        than `numtaps`.
    window : string or (string, float) or float, or None, optional
        Window function to use. Default is "hamming".  See
        `scipy.signal.get_window` for the complete list of possible values.
        If None, no window function is applied.
    nyq : float, optional
        *Deprecated.  Use `fs` instead.*  This is the Nyquist frequency.
        Each frequency in `freq` must be between 0 and `nyq`.  Default is 1.
    antisymmetric : bool, optional
        Whether resulting impulse response is symmetric/antisymmetric.
        See Notes for more details.
    fs : float, optional
        The sampling frequency of the signal.  Each frequency in `cutoff`
        must be between 0 and ``fs/2``.  Default is 2.

    Returns
    -------
    taps : ndarray
        The filter coefficients of the FIR filter, as a 1-D array of length
        `numtaps`.

    See also
    --------
    firls
    firwin
    minimum_phase
    remez

    Notes
    -----
    From the given set of frequencies and gains, the desired response is
    constructed in the frequency domain.  The inverse FFT is applied to the
    desired response to create the associated convolution kernel, and the
    first `numtaps` coefficients of this kernel, scaled by `window`, are
    returned.

    The FIR filter will have linear phase. The type of filter is determined by
    the value of 'numtaps` and `antisymmetric` flag.
    There are four possible combinations:

       - odd  `numtaps`, `antisymmetric` is False, type I filter is produced
       - even `numtaps`, `antisymmetric` is False, type II filter is produced
       - odd  `numtaps`, `antisymmetric` is True, type III filter is produced
       - even `numtaps`, `antisymmetric` is True, type IV filter is produced

    Magnitude response of all but type I filters are subjects to following
    constraints:

       - type II  -- zero at the Nyquist frequency
       - type III -- zero at zero and Nyquist frequencies
       - type IV  -- zero at zero frequency

    .. versionadded:: 0.9.0

    References
    ----------
    .. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal
       Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989).
       (See, for example, Section 7.4.)

    .. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital
       Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm

    Examples
    --------
    A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and
    that decreases linearly on [0.5, 1.0] from 1 to 0:

    >>> from scipy import signal
    >>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
    >>> print(taps[72:78])
    [-0.02286961 -0.06362756  0.57310236  0.57310236 -0.06362756 -0.02286961]

    """
    nyq = 0.5 * _get_fs(fs, nyq)

    if len(freq) != len(gain):
        raise ValueError('freq and gain must be of same length.')

    if nfreqs is not None and numtaps >= nfreqs:
        raise ValueError(('ntaps must be less than nfreqs, but firwin2 was '
                          'called with ntaps=%d and nfreqs=%s') %
                         (numtaps, nfreqs))

    if freq[0] != 0 or freq[-1] != nyq:
        raise ValueError('freq must start with 0 and end with fs/2.')
    d = np.diff(freq)
    if (d < 0).any():
        raise ValueError('The values in freq must be nondecreasing.')
    d2 = d[:-1] + d[1:]
    if (d2 == 0).any():
        raise ValueError('A value in freq must not occur more than twice.')

    if antisymmetric:
        if numtaps % 2 == 0:
            ftype = 4
        else:
            ftype = 3
    else:
        if numtaps % 2 == 0:
            ftype = 2
        else:
            ftype = 1

    if ftype == 2 and gain[-1] != 0.0:
        raise ValueError("A Type II filter must have zero gain at the "
                         "Nyquist frequency.")
    elif ftype == 3 and (gain[0] != 0.0 or gain[-1] != 0.0):
        raise ValueError("A Type III filter must have zero gain at zero "
                         "and Nyquist frequencies.")
    elif ftype == 4 and gain[0] != 0.0:
        raise ValueError("A Type IV filter must have zero gain at zero "
                         "frequency.")

    if nfreqs is None:
        nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2)))

    # Tweak any repeated values in freq so that interp works.
    eps = np.finfo(float).eps
    for k in range(len(freq)):
        if k < len(freq) - 1 and freq[k] == freq[k + 1]:
            freq[k] = freq[k] - eps
            freq[k + 1] = freq[k + 1] + eps

    # Linearly interpolate the desired response on a uniform mesh `x`.
    x = np.linspace(0.0, nyq, nfreqs)
    fx = np.interp(x, freq, gain)

    # Adjust the phases of the coefficients so that the first `ntaps` of the
    # inverse FFT are the desired filter coefficients.
    shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq)
    if ftype > 2:
        shift *= 1j

    fx2 = fx * shift

    # Use irfft to compute the inverse FFT.
    out_full = irfft(fx2)

    if window is not None:
        # Create the window to apply to the filter coefficients.
        from .signaltools import get_window
        wind = get_window(window, numtaps, fftbins=False)
    else:
        wind = 1

    # Keep only the first `numtaps` coefficients in `out`, and multiply by
    # the window.
    out = out_full[:numtaps] * wind

    if ftype == 3:
        out[out.size // 2] = 0.0

    return out


def remez(numtaps, bands, desired, weight=None, Hz=None, type='bandpass',
          maxiter=25, grid_density=16, fs=None):
    """
    Calculate the minimax optimal filter using the Remez exchange algorithm.

    Calculate the filter-coefficients for the finite impulse response
    (FIR) filter whose transfer function minimizes the maximum error
    between the desired gain and the realized gain in the specified
    frequency bands using the Remez exchange algorithm.

    Parameters
    ----------
    numtaps : int
        The desired number of taps in the filter. The number of taps is
        the number of terms in the filter, or the filter order plus one.
    bands : array_like
        A monotonic sequence containing the band edges.
        All elements must be non-negative and less than half the sampling
        frequency as given by `fs`.
    desired : array_like
        A sequence half the size of bands containing the desired gain
        in each of the specified bands.
    weight : array_like, optional
        A relative weighting to give to each band region. The length of
        `weight` has to be half the length of `bands`.
    Hz : scalar, optional
        *Deprecated.  Use `fs` instead.*
        The sampling frequency in Hz. Default is 1.
    type : {'bandpass', 'differentiator', 'hilbert'}, optional
        The type of filter:

          * 'bandpass' : flat response in bands. This is the default.

          * 'differentiator' : frequency proportional response in bands.

          * 'hilbert' : filter with odd symmetry, that is, type III
                        (for even order) or type IV (for odd order)
                        linear phase filters.

    maxiter : int, optional
        Maximum number of iterations of the algorithm. Default is 25.
    grid_density : int, optional
        Grid density. The dense grid used in `remez` is of size
        ``(numtaps + 1) * grid_density``. Default is 16.
    fs : float, optional
        The sampling frequency of the signal.  Default is 1.

    Returns
    -------
    out : ndarray
        A rank-1 array containing the coefficients of the optimal
        (in a minimax sense) filter.

    See Also
    --------
    firls
    firwin
    firwin2
    minimum_phase

    References
    ----------
    .. [1] J. H. McClellan and T. W. Parks, "A unified approach to the
           design of optimum FIR linear phase digital filters",
           IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973.
    .. [2] J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer
           Program for Designing Optimum FIR Linear Phase Digital
           Filters", IEEE Trans. Audio Electroacoust., vol. AU-21,
           pp. 506-525, 1973.

    Examples
    --------
    For a signal sampled at 100 Hz, we want to construct a filter with a
    passband at 20-40 Hz, and stop bands at 0-10 Hz and 45-50 Hz. Note that
    this means that the behavior in the frequency ranges between those bands
    is unspecified and may overshoot.

    >>> from scipy import signal
    >>> fs = 100
    >>> bpass = signal.remez(72, [0, 10, 20, 40, 45, 50], [0, 1, 0], fs=fs)
    >>> freq, response = signal.freqz(bpass)

    >>> import matplotlib.pyplot as plt
    >>> plt.semilogy(0.5*fs*freq/np.pi, np.abs(response), 'b-')
    >>> plt.grid(alpha=0.25)
    >>> plt.xlabel('Frequency (Hz)')
    >>> plt.ylabel('Gain')
    >>> plt.show()

    """
    if Hz is None and fs is None:
        fs = 1.0
    elif Hz is not None:
        if fs is not None:
            raise ValueError("Values cannot be given for both 'Hz' and 'fs'.")
        fs = Hz

    # Convert type
    try:
        tnum = {'bandpass': 1, 'differentiator': 2, 'hilbert': 3}[type]
    except KeyError:
        raise ValueError("Type must be 'bandpass', 'differentiator', "
                         "or 'hilbert'")

    # Convert weight
    if weight is None:
        weight = [1] * len(desired)

    bands = np.asarray(bands).copy()
    return sigtools._remez(numtaps, bands, desired, weight, tnum, fs,
                           maxiter, grid_density)


def firls(numtaps, bands, desired, weight=None, nyq=None, fs=None):
    """
    FIR filter design using least-squares error minimization.

    Calculate the filter coefficients for the linear-phase finite
    impulse response (FIR) filter which has the best approximation
    to the desired frequency response described by `bands` and
    `desired` in the least squares sense (i.e., the integral of the
    weighted mean-squared error within the specified bands is
    minimized).

    Parameters
    ----------
    numtaps : int
        The number of taps in the FIR filter.  `numtaps` must be odd.
    bands : array_like
        A monotonic nondecreasing sequence containing the band edges in
        Hz. All elements must be non-negative and less than or equal to
        the Nyquist frequency given by `nyq`.
    desired : array_like
        A sequence the same size as `bands` containing the desired gain
        at the start and end point of each band.
    weight : array_like, optional
        A relative weighting to give to each band region when solving
        the least squares problem. `weight` has to be half the size of
        `bands`.
    nyq : float, optional
        *Deprecated.  Use `fs` instead.*
        Nyquist frequency. Each frequency in `bands` must be between 0
        and `nyq` (inclusive).  Default is 1.
    fs : float, optional
        The sampling frequency of the signal. Each frequency in `bands`
        must be between 0 and ``fs/2`` (inclusive).  Default is 2.

    Returns
    -------
    coeffs : ndarray
        Coefficients of the optimal (in a least squares sense) FIR filter.

    See also
    --------
    firwin
    firwin2
    minimum_phase
    remez

    Notes
    -----
    This implementation follows the algorithm given in [1]_.
    As noted there, least squares design has multiple advantages:

        1. Optimal in a least-squares sense.
        2. Simple, non-iterative method.
        3. The general solution can obtained by solving a linear
           system of equations.
        4. Allows the use of a frequency dependent weighting function.

    This function constructs a Type I linear phase FIR filter, which
    contains an odd number of `coeffs` satisfying for :math:`n < numtaps`:

    .. math:: coeffs(n) = coeffs(numtaps - 1 - n)

    The odd number of coefficients and filter symmetry avoid boundary
    conditions that could otherwise occur at the Nyquist and 0 frequencies
    (e.g., for Type II, III, or IV variants).

    .. versionadded:: 0.18

    References
    ----------
    .. [1] Ivan Selesnick, Linear-Phase Fir Filter Design By Least Squares.
           OpenStax CNX. Aug 9, 2005.
           http://cnx.org/contents/eb1ecb35-03a9-4610-ba87-41cd771c95f2@7

    Examples
    --------
    We want to construct a band-pass filter. Note that the behavior in the
    frequency ranges between our stop bands and pass bands is unspecified,
    and thus may overshoot depending on the parameters of our filter:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> fig, axs = plt.subplots(2)
    >>> fs = 10.0  # Hz
    >>> desired = (0, 0, 1, 1, 0, 0)
    >>> for bi, bands in enumerate(((0, 1, 2, 3, 4, 5), (0, 1, 2, 4, 4.5, 5))):
    ...     fir_firls = signal.firls(73, bands, desired, fs=fs)
    ...     fir_remez = signal.remez(73, bands, desired[::2], fs=fs)
    ...     fir_firwin2 = signal.firwin2(73, bands, desired, fs=fs)
    ...     hs = list()
    ...     ax = axs[bi]
    ...     for fir in (fir_firls, fir_remez, fir_firwin2):
    ...         freq, response = signal.freqz(fir)
    ...         hs.append(ax.semilogy(0.5*fs*freq/np.pi, np.abs(response))[0])
    ...     for band, gains in zip(zip(bands[::2], bands[1::2]),
    ...                            zip(desired[::2], desired[1::2])):
    ...         ax.semilogy(band, np.maximum(gains, 1e-7), 'k--', linewidth=2)
    ...     if bi == 0:
    ...         ax.legend(hs, ('firls', 'remez', 'firwin2'),
    ...                   loc='lower center', frameon=False)
    ...     else:
    ...         ax.set_xlabel('Frequency (Hz)')
    ...     ax.grid(True)
    ...     ax.set(title='Band-pass %d-%d Hz' % bands[2:4], ylabel='Magnitude')
    ...
    >>> fig.tight_layout()
    >>> plt.show()

    """  # noqa
    nyq = 0.5 * _get_fs(fs, nyq)

    numtaps = int(numtaps)
    if numtaps % 2 == 0 or numtaps < 1:
        raise ValueError("numtaps must be odd and >= 1")
    M = (numtaps-1) // 2

    # normalize bands 0->1 and make it 2 columns
    nyq = float(nyq)
    if nyq <= 0:
        raise ValueError('nyq must be positive, got %s <= 0.' % nyq)
    bands = np.asarray(bands).flatten() / nyq
    if len(bands) % 2 != 0:
        raise ValueError("bands must contain frequency pairs.")
    bands.shape = (-1, 2)

    # check remaining params
    desired = np.asarray(desired).flatten()
    if bands.size != desired.size:
        raise ValueError("desired must have one entry per frequency, got %s "
                         "gains for %s frequencies."
                         % (desired.size, bands.size))
    desired.shape = (-1, 2)
    if (np.diff(bands) <= 0).any() or (np.diff(bands[:, 0]) < 0).any():
        raise ValueError("bands must be monotonically nondecreasing and have "
                         "width > 0.")
    if (bands[:-1, 1] > bands[1:, 0]).any():
        raise ValueError("bands must not overlap.")
    if (desired < 0).any():
        raise ValueError("desired must be non-negative.")
    if weight is None:
        weight = np.ones(len(desired))
    weight = np.asarray(weight).flatten()
    if len(weight) != len(desired):
        raise ValueError("weight must be the same size as the number of "
                         "band pairs (%s)." % (len(bands),))
    if (weight < 0).any():
        raise ValueError("weight must be non-negative.")

    # Set up the linear matrix equation to be solved, Qa = b

    # We can express Q(k,n) = 0.5 Q1(k,n) + 0.5 Q2(k,n)
    # where Q1(k,n)=q(k−n) and Q2(k,n)=q(k+n), i.e. a Toeplitz plus Hankel.

    # We omit the factor of 0.5 above, instead adding it during coefficient
    # calculation.

    # We also omit the 1/π from both Q and b equations, as they cancel
    # during solving.

    # We have that:
    #     q(n) = 1/π ∫W(ω)cos(nω)dω (over 0->π)
    # Using our nomalization ω=πf and with a constant weight W over each
    # interval f1->f2 we get:
    #     q(n) = W∫cos(πnf)df (0->1) = Wf sin(πnf)/πnf
    # integrated over each f1->f2 pair (i.e., value at f2 - value at f1).
    n = np.arange(numtaps)[:, np.newaxis, np.newaxis]
    q = np.dot(np.diff(np.sinc(bands * n) * bands, axis=2)[:, :, 0], weight)

    # Now we assemble our sum of Toeplitz and Hankel
    Q1 = toeplitz(q[:M+1])
    Q2 = hankel(q[:M+1], q[M:])
    Q = Q1 + Q2

    # Now for b(n) we have that:
    #     b(n) = 1/π ∫ W(ω)D(ω)cos(nω)dω (over 0->π)
    # Using our normalization ω=πf and with a constant weight W over each
    # interval and a linear term for D(ω) we get (over each f1->f2 interval):
    #     b(n) = W ∫ (mf+c)cos(πnf)df
    #          = f(mf+c)sin(πnf)/πnf + mf**2 cos(nπf)/(πnf)**2
    # integrated over each f1->f2 pair (i.e., value at f2 - value at f1).
    n = n[:M + 1]  # only need this many coefficients here
    # Choose m and c such that we are at the start and end weights
    m = (np.diff(desired, axis=1) / np.diff(bands, axis=1))
    c = desired[:, [0]] - bands[:, [0]] * m
    b = bands * (m*bands + c) * np.sinc(bands * n)
    # Use L'Hospital's rule here for cos(nπf)/(πnf)**2 @ n=0
    b[0] -= m * bands * bands / 2.
    b[1:] += m * np.cos(n[1:] * np.pi * bands) / (np.pi * n[1:]) ** 2
    b = np.dot(np.diff(b, axis=2)[:, :, 0], weight)

    # Now we can solve the equation (use pinv because Q can be rank deficient)
    a = np.dot(pinv(Q), b)

    # make coefficients symmetric (linear phase)
    coeffs = np.hstack((a[:0:-1], 2 * a[0], a[1:]))
    return coeffs


def _dhtm(mag):
    """Compute the modified 1D discrete Hilbert transform

    Parameters
    ----------
    mag : ndarray
        The magnitude spectrum. Should be 1D with an even length, and
        preferably a fast length for FFT/IFFT.
    """
    # Adapted based on code by Niranjan Damera-Venkata,
    # Brian L. Evans and Shawn R. McCaslin (see refs for `minimum_phase`)
    sig = np.zeros(len(mag))
    # Leave Nyquist and DC at 0, knowing np.abs(fftfreq(N)[midpt]) == 0.5
    midpt = len(mag) // 2
    sig[1:midpt] = 1
    sig[midpt+1:] = -1
    # eventually if we want to support complex filters, we will need a
    # np.abs() on the mag inside the log, and should remove the .real
    recon = ifft(mag * np.exp(fft(sig * ifft(np.log(mag))))).real
    return recon


def minimum_phase(h, method='homomorphic', n_fft=None):
    """Convert a linear-phase FIR filter to minimum phase

    Parameters
    ----------
    h : array
        Linear-phase FIR filter coefficients.
    method : {'hilbert', 'homomorphic'}
        The method to use:

            'homomorphic' (default)
                This method [4]_ [5]_ works best with filters with an
                odd number of taps, and the resulting minimum phase filter
                will have a magnitude response that approximates the square
                root of the the original filter's magnitude response.

            'hilbert'
                This method [1]_ is designed to be used with equiripple
                filters (e.g., from `remez`) with unity or zero gain
                regions.

    n_fft : int
        The number of points to use for the FFT. Should be at least a
        few times larger than the signal length (see Notes).

    Returns
    -------
    h_minimum : array
        The minimum-phase version of the filter, with length
        ``(length(h) + 1) // 2``.

    See Also
    --------
    firwin
    firwin2
    remez

    Notes
    -----
    Both the Hilbert [1]_ or homomorphic [4]_ [5]_ methods require selection
    of an FFT length to estimate the complex cepstrum of the filter.

    In the case of the Hilbert method, the deviation from the ideal
    spectrum ``epsilon`` is related to the number of stopband zeros
    ``n_stop`` and FFT length ``n_fft`` as::

        epsilon = 2. * n_stop / n_fft

    For example, with 100 stopband zeros and a FFT length of 2048,
    ``epsilon = 0.0976``. If we conservatively assume that the number of
    stopband zeros is one less than the filter length, we can take the FFT
    length to be the next power of 2 that satisfies ``epsilon=0.01`` as::

        n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))

    This gives reasonable results for both the Hilbert and homomorphic
    methods, and gives the value used when ``n_fft=None``.

    Alternative implementations exist for creating minimum-phase filters,
    including zero inversion [2]_ and spectral factorization [3]_ [4]_.
    For more information, see:

        http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters

    Examples
    --------
    Create an optimal linear-phase filter, then convert it to minimum phase:

    >>> from scipy.signal import remez, minimum_phase, freqz, group_delay
    >>> import matplotlib.pyplot as plt
    >>> freq = [0, 0.2, 0.3, 1.0]
    >>> desired = [1, 0]
    >>> h_linear = remez(151, freq, desired, Hz=2.)

    Convert it to minimum phase:

    >>> h_min_hom = minimum_phase(h_linear, method='homomorphic')
    >>> h_min_hil = minimum_phase(h_linear, method='hilbert')

    Compare the three filters:

    >>> fig, axs = plt.subplots(4, figsize=(4, 8))
    >>> for h, style, color in zip((h_linear, h_min_hom, h_min_hil),
    ...                            ('-', '-', '--'), ('k', 'r', 'c')):
    ...     w, H = freqz(h)
    ...     w, gd = group_delay((h, 1))
    ...     w /= np.pi
    ...     axs[0].plot(h, color=color, linestyle=style)
    ...     axs[1].plot(w, np.abs(H), color=color, linestyle=style)
    ...     axs[2].plot(w, 20 * np.log10(np.abs(H)), color=color, linestyle=style)
    ...     axs[3].plot(w, gd, color=color, linestyle=style)
    >>> for ax in axs:
    ...     ax.grid(True, color='0.5')
    ...     ax.fill_between(freq[1:3], *ax.get_ylim(), color='#ffeeaa', zorder=1)
    >>> axs[0].set(xlim=[0, len(h_linear) - 1], ylabel='Amplitude', xlabel='Samples')
    >>> axs[1].legend(['Linear', 'Min-Hom', 'Min-Hil'], title='Phase')
    >>> for ax, ylim in zip(axs[1:], ([0, 1.1], [-150, 10], [-60, 60])):
    ...     ax.set(xlim=[0, 1], ylim=ylim, xlabel='Frequency')
    >>> axs[1].set(ylabel='Magnitude')
    >>> axs[2].set(ylabel='Magnitude (dB)')
    >>> axs[3].set(ylabel='Group delay')
    >>> plt.tight_layout()

    References
    ----------
    .. [1] N. Damera-Venkata and B. L. Evans, "Optimal design of real and
           complex minimum phase digital FIR filters," Acoustics, Speech,
           and Signal Processing, 1999. Proceedings., 1999 IEEE International
           Conference on, Phoenix, AZ, 1999, pp. 1145-1148 vol.3.
           doi: 10.1109/ICASSP.1999.756179
    .. [2] X. Chen and T. W. Parks, "Design of optimal minimum phase FIR
           filters by direct factorization," Signal Processing,
           vol. 10, no. 4, pp. 369-383, Jun. 1986.
    .. [3] T. Saramaki, "Finite Impulse Response Filter Design," in
           Handbook for Digital Signal Processing, chapter 4,
           New York: Wiley-Interscience, 1993.
    .. [4] J. S. Lim, Advanced Topics in Signal Processing.
           Englewood Cliffs, N.J.: Prentice Hall, 1988.
    .. [5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,
           "Discrete-Time Signal Processing," 2nd edition.
           Upper Saddle River, N.J.: Prentice Hall, 1999.
    """  # noqa
    h = np.asarray(h)
    if np.iscomplexobj(h):
        raise ValueError('Complex filters not supported')
    if h.ndim != 1 or h.size <= 2:
        raise ValueError('h must be 1D and at least 2 samples long')
    n_half = len(h) // 2
    if not np.allclose(h[-n_half:][::-1], h[:n_half]):
        warnings.warn('h does not appear to by symmetric, conversion may '
                      'fail', RuntimeWarning)
    if not isinstance(method, string_types) or method not in \
            ('homomorphic', 'hilbert',):
        raise ValueError('method must be "homomorphic" or "hilbert", got %r'
                         % (method,))
    if n_fft is None:
        n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
    n_fft = int(n_fft)
    if n_fft < len(h):
        raise ValueError('n_fft must be at least len(h)==%s' % len(h))
    if method == 'hilbert':
        w = np.arange(n_fft) * (2 * np.pi / n_fft * n_half)
        H = np.real(fft(h, n_fft) * np.exp(1j * w))
        dp = max(H) - 1
        ds = 0 - min(H)
        S = 4. / (np.sqrt(1+dp+ds) + np.sqrt(1-dp+ds)) ** 2
        H += ds
        H *= S
        H = np.sqrt(H, out=H)
        H += 1e-10  # ensure that the log does not explode
        h_minimum = _dhtm(H)
    else:  # method == 'homomorphic'
        # zero-pad; calculate the DFT
        h_temp = np.abs(fft(h, n_fft))
        # take 0.25*log(|H|**2) = 0.5*log(|H|)
        h_temp += 1e-7 * h_temp[h_temp > 0].min()  # don't let log blow up
        np.log(h_temp, out=h_temp)
        h_temp *= 0.5
        # IDFT
        h_temp = ifft(h_temp).real
        # multiply pointwise by the homomorphic filter
        # lmin[n] = 2u[n] - d[n]
        win = np.zeros(n_fft)
        win[0] = 1
        stop = (len(h) + 1) // 2
        win[1:stop] = 2
        if len(h) % 2:
            win[stop] = 1
        h_temp *= win
        h_temp = ifft(np.exp(fft(h_temp)))
        h_minimum = h_temp.real
    n_out = n_half + len(h) % 2
    return h_minimum[:n_out]