1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
|
# -*- coding: utf-8 -*-
"""Functions for FIR filter design."""
from __future__ import division, print_function, absolute_import
from math import ceil, log
import warnings
import numpy as np
from numpy.fft import irfft, fft, ifft
from scipy.special import sinc
from scipy.linalg import toeplitz, hankel, pinv
from scipy._lib.six import string_types
from . import sigtools
__all__ = ['kaiser_beta', 'kaiser_atten', 'kaiserord',
'firwin', 'firwin2', 'remez', 'firls', 'minimum_phase']
def _get_fs(fs, nyq):
"""
Utility for replacing the argument 'nyq' (with default 1) with 'fs'.
"""
if nyq is None and fs is None:
fs = 2
elif nyq is not None:
if fs is not None:
raise ValueError("Values cannot be given for both 'nyq' and 'fs'.")
fs = 2*nyq
return fs
# Some notes on function parameters:
#
# `cutoff` and `width` are given as numbers between 0 and 1. These are
# relative frequencies, expressed as a fraction of the Nyquist frequency.
# For example, if the Nyquist frequency is 2 KHz, then width=0.15 is a width
# of 300 Hz.
#
# The `order` of a FIR filter is one less than the number of taps.
# This is a potential source of confusion, so in the following code,
# we will always use the number of taps as the parameterization of
# the 'size' of the filter. The "number of taps" means the number
# of coefficients, which is the same as the length of the impulse
# response of the filter.
def kaiser_beta(a):
"""Compute the Kaiser parameter `beta`, given the attenuation `a`.
Parameters
----------
a : float
The desired attenuation in the stopband and maximum ripple in
the passband, in dB. This should be a *positive* number.
Returns
-------
beta : float
The `beta` parameter to be used in the formula for a Kaiser window.
References
----------
Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.
Examples
--------
Suppose we want to design a lowpass filter, with 65 dB attenuation
in the stop band. The Kaiser window parameter to be used in the
window method is computed by `kaiser_beta(65)`:
>>> from scipy.signal import kaiser_beta
>>> kaiser_beta(65)
6.20426
"""
if a > 50:
beta = 0.1102 * (a - 8.7)
elif a > 21:
beta = 0.5842 * (a - 21) ** 0.4 + 0.07886 * (a - 21)
else:
beta = 0.0
return beta
def kaiser_atten(numtaps, width):
"""Compute the attenuation of a Kaiser FIR filter.
Given the number of taps `N` and the transition width `width`, compute the
attenuation `a` in dB, given by Kaiser's formula:
a = 2.285 * (N - 1) * pi * width + 7.95
Parameters
----------
numtaps : int
The number of taps in the FIR filter.
width : float
The desired width of the transition region between passband and
stopband (or, in general, at any discontinuity) for the filter,
expressed as a fraction of the Nyquist frequency.
Returns
-------
a : float
The attenuation of the ripple, in dB.
See Also
--------
kaiserord, kaiser_beta
Examples
--------
Suppose we want to design a FIR filter using the Kaiser window method
that will have 211 taps and a transition width of 9 Hz for a signal that
is sampled at 480 Hz. Expressed as a fraction of the Nyquist frequency,
the width is 9/(0.5*480) = 0.0375. The approximate attenuation (in dB)
is computed as follows:
>>> from scipy.signal import kaiser_atten
>>> kaiser_atten(211, 0.0375)
64.48099630593983
"""
a = 2.285 * (numtaps - 1) * np.pi * width + 7.95
return a
def kaiserord(ripple, width):
"""
Determine the filter window parameters for the Kaiser window method.
The parameters returned by this function are generally used to create
a finite impulse response filter using the window method, with either
`firwin` or `firwin2`.
Parameters
----------
ripple : float
Upper bound for the deviation (in dB) of the magnitude of the
filter's frequency response from that of the desired filter (not
including frequencies in any transition intervals). That is, if w
is the frequency expressed as a fraction of the Nyquist frequency,
A(w) is the actual frequency response of the filter and D(w) is the
desired frequency response, the design requirement is that::
abs(A(w) - D(w))) < 10**(-ripple/20)
for 0 <= w <= 1 and w not in a transition interval.
width : float
Width of transition region, normalized so that 1 corresponds to pi
radians / sample. That is, the frequency is expressed as a fraction
of the Nyquist frequency.
Returns
-------
numtaps : int
The length of the Kaiser window.
beta : float
The beta parameter for the Kaiser window.
See Also
--------
kaiser_beta, kaiser_atten
Notes
-----
There are several ways to obtain the Kaiser window:
- ``signal.kaiser(numtaps, beta, sym=True)``
- ``signal.get_window(beta, numtaps)``
- ``signal.get_window(('kaiser', beta), numtaps)``
The empirical equations discovered by Kaiser are used.
References
----------
Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.
Examples
--------
We will use the Kaiser window method to design a lowpass FIR filter
for a signal that is sampled at 1000 Hz.
We want at least 65 dB rejection in the stop band, and in the pass
band the gain should vary no more than 0.5%.
We want a cutoff frequency of 175 Hz, with a transition between the
pass band and the stop band of 24 Hz. That is, in the band [0, 163],
the gain varies no more than 0.5%, and in the band [187, 500], the
signal is attenuated by at least 65 dB.
>>> from scipy.signal import kaiserord, firwin, freqz
>>> import matplotlib.pyplot as plt
>>> fs = 1000.0
>>> cutoff = 175
>>> width = 24
The Kaiser method accepts just a single parameter to control the pass
band ripple and the stop band rejection, so we use the more restrictive
of the two. In this case, the pass band ripple is 0.005, or 46.02 dB,
so we will use 65 dB as the design parameter.
Use `kaiserord` to determine the length of the filter and the
parameter for the Kaiser window.
>>> numtaps, beta = kaiserord(65, width/(0.5*fs))
>>> numtaps
167
>>> beta
6.20426
Use `firwin` to create the FIR filter.
>>> taps = firwin(numtaps, cutoff, window=('kaiser', beta),
... scale=False, nyq=0.5*fs)
Compute the frequency response of the filter. ``w`` is the array of
frequencies, and ``h`` is the corresponding complex array of frequency
responses.
>>> w, h = freqz(taps, worN=8000)
>>> w *= 0.5*fs/np.pi # Convert w to Hz.
Compute the deviation of the magnitude of the filter's response from
that of the ideal lowpass filter. Values in the transition region are
set to ``nan``, so they won't appear in the plot.
>>> ideal = w < cutoff # The "ideal" frequency response.
>>> deviation = np.abs(np.abs(h) - ideal)
>>> deviation[(w > cutoff - 0.5*width) & (w < cutoff + 0.5*width)] = np.nan
Plot the deviation. A close look at the left end of the stop band shows
that the requirement for 65 dB attenuation is violated in the first lobe
by about 0.125 dB. This is not unusual for the Kaiser window method.
>>> plt.plot(w, 20*np.log10(np.abs(deviation)))
>>> plt.xlim(0, 0.5*fs)
>>> plt.ylim(-90, -60)
>>> plt.grid(alpha=0.25)
>>> plt.axhline(-65, color='r', ls='--', alpha=0.3)
>>> plt.xlabel('Frequency (Hz)')
>>> plt.ylabel('Deviation from ideal (dB)')
>>> plt.title('Lowpass Filter Frequency Response')
>>> plt.show()
"""
A = abs(ripple) # in case somebody is confused as to what's meant
if A < 8:
# Formula for N is not valid in this range.
raise ValueError("Requested maximum ripple attentuation %f is too "
"small for the Kaiser formula." % A)
beta = kaiser_beta(A)
# Kaiser's formula (as given in Oppenheim and Schafer) is for the filter
# order, so we have to add 1 to get the number of taps.
numtaps = (A - 7.95) / 2.285 / (np.pi * width) + 1
return int(ceil(numtaps)), beta
def firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True,
scale=True, nyq=None, fs=None):
"""
FIR filter design using the window method.
This function computes the coefficients of a finite impulse response
filter. The filter will have linear phase; it will be Type I if
`numtaps` is odd and Type II if `numtaps` is even.
Type II filters always have zero response at the Nyquist frequency, so a
ValueError exception is raised if firwin is called with `numtaps` even and
having a passband whose right end is at the Nyquist frequency.
Parameters
----------
numtaps : int
Length of the filter (number of coefficients, i.e. the filter
order + 1). `numtaps` must be even if a passband includes the
Nyquist frequency.
cutoff : float or 1D array_like
Cutoff frequency of filter (expressed in the same units as `nyq`)
OR an array of cutoff frequencies (that is, band edges). In the
latter case, the frequencies in `cutoff` should be positive and
monotonically increasing between 0 and `nyq`. The values 0 and
`nyq` must not be included in `cutoff`.
width : float or None, optional
If `width` is not None, then assume it is the approximate width
of the transition region (expressed in the same units as `nyq`)
for use in Kaiser FIR filter design. In this case, the `window`
argument is ignored.
window : string or tuple of string and parameter values, optional
Desired window to use. See `scipy.signal.get_window` for a list
of windows and required parameters.
pass_zero : bool, optional
If True, the gain at the frequency 0 (i.e. the "DC gain") is 1.
Otherwise the DC gain is 0.
scale : bool, optional
Set to True to scale the coefficients so that the frequency
response is exactly unity at a certain frequency.
That frequency is either:
- 0 (DC) if the first passband starts at 0 (i.e. pass_zero
is True)
- `nyq` (the Nyquist frequency) if the first passband ends at
`nyq` (i.e the filter is a single band highpass filter);
center of first passband otherwise
nyq : float, optional
*Deprecated. Use `fs` instead.* This is the Nyquist frequency.
Each frequency in `cutoff` must be between 0 and `nyq`. Default
is 1.
fs : float, optional
The sampling frequency of the signal. Each frequency in `cutoff`
must be between 0 and ``fs/2``. Default is 2.
Returns
-------
h : (numtaps,) ndarray
Coefficients of length `numtaps` FIR filter.
Raises
------
ValueError
If any value in `cutoff` is less than or equal to 0 or greater
than or equal to ``fs/2``, if the values in `cutoff` are not strictly
monotonically increasing, or if `numtaps` is even but a passband
includes the Nyquist frequency.
See Also
--------
firwin2
firls
minimum_phase
remez
Examples
--------
Low-pass from 0 to f:
>>> from scipy import signal
>>> numtaps = 3
>>> f = 0.1
>>> signal.firwin(numtaps, f)
array([ 0.06799017, 0.86401967, 0.06799017])
Use a specific window function:
>>> signal.firwin(numtaps, f, window='nuttall')
array([ 3.56607041e-04, 9.99286786e-01, 3.56607041e-04])
High-pass ('stop' from 0 to f):
>>> signal.firwin(numtaps, f, pass_zero=False)
array([-0.00859313, 0.98281375, -0.00859313])
Band-pass:
>>> f1, f2 = 0.1, 0.2
>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
array([ 0.06301614, 0.88770441, 0.06301614])
Band-stop:
>>> signal.firwin(numtaps, [f1, f2])
array([-0.00801395, 1.0160279 , -0.00801395])
Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):
>>> f3, f4 = 0.3, 0.4
>>> signal.firwin(numtaps, [f1, f2, f3, f4])
array([-0.01376344, 1.02752689, -0.01376344])
Multi-band (passbands are [f1, f2] and [f3,f4]):
>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
array([ 0.04890915, 0.91284326, 0.04890915])
"""
# The major enhancements to this function added in November 2010 were
# developed by Tom Krauss (see ticket #902).
nyq = 0.5 * _get_fs(fs, nyq)
cutoff = np.atleast_1d(cutoff) / float(nyq)
# Check for invalid input.
if cutoff.ndim > 1:
raise ValueError("The cutoff argument must be at most "
"one-dimensional.")
if cutoff.size == 0:
raise ValueError("At least one cutoff frequency must be given.")
if cutoff.min() <= 0 or cutoff.max() >= 1:
raise ValueError("Invalid cutoff frequency: frequencies must be "
"greater than 0 and less than fs/2.")
if np.any(np.diff(cutoff) <= 0):
raise ValueError("Invalid cutoff frequencies: the frequencies "
"must be strictly increasing.")
if width is not None:
# A width was given. Find the beta parameter of the Kaiser window
# and set `window`. This overrides the value of `window` passed in.
atten = kaiser_atten(numtaps, float(width) / nyq)
beta = kaiser_beta(atten)
window = ('kaiser', beta)
pass_nyquist = bool(cutoff.size & 1) ^ pass_zero
if pass_nyquist and numtaps % 2 == 0:
raise ValueError("A filter with an even number of coefficients must "
"have zero response at the Nyquist frequency.")
# Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff
# is even, and each pair in cutoff corresponds to passband.
cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist))
# `bands` is a 2D array; each row gives the left and right edges of
# a passband.
bands = cutoff.reshape(-1, 2)
# Build up the coefficients.
alpha = 0.5 * (numtaps - 1)
m = np.arange(0, numtaps) - alpha
h = 0
for left, right in bands:
h += right * sinc(right * m)
h -= left * sinc(left * m)
# Get and apply the window function.
from .signaltools import get_window
win = get_window(window, numtaps, fftbins=False)
h *= win
# Now handle scaling if desired.
if scale:
# Get the first passband.
left, right = bands[0]
if left == 0:
scale_frequency = 0.0
elif right == 1:
scale_frequency = 1.0
else:
scale_frequency = 0.5 * (left + right)
c = np.cos(np.pi * m * scale_frequency)
s = np.sum(h * c)
h /= s
return h
# Original version of firwin2 from scipy ticket #457, submitted by "tash".
#
# Rewritten by Warren Weckesser, 2010.
def firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=None,
antisymmetric=False, fs=None):
"""
FIR filter design using the window method.
From the given frequencies `freq` and corresponding gains `gain`,
this function constructs an FIR filter with linear phase and
(approximately) the given frequency response.
Parameters
----------
numtaps : int
The number of taps in the FIR filter. `numtaps` must be less than
`nfreqs`.
freq : array_like, 1D
The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being
Nyquist. The Nyquist frequency is half `fs`.
The values in `freq` must be nondecreasing. A value can be repeated
once to implement a discontinuity. The first value in `freq` must
be 0, and the last value must be ``fs/2``.
gain : array_like
The filter gains at the frequency sampling points. Certain
constraints to gain values, depending on the filter type, are applied,
see Notes for details.
nfreqs : int, optional
The size of the interpolation mesh used to construct the filter.
For most efficient behavior, this should be a power of 2 plus 1
(e.g, 129, 257, etc). The default is one more than the smallest
power of 2 that is not less than `numtaps`. `nfreqs` must be greater
than `numtaps`.
window : string or (string, float) or float, or None, optional
Window function to use. Default is "hamming". See
`scipy.signal.get_window` for the complete list of possible values.
If None, no window function is applied.
nyq : float, optional
*Deprecated. Use `fs` instead.* This is the Nyquist frequency.
Each frequency in `freq` must be between 0 and `nyq`. Default is 1.
antisymmetric : bool, optional
Whether resulting impulse response is symmetric/antisymmetric.
See Notes for more details.
fs : float, optional
The sampling frequency of the signal. Each frequency in `cutoff`
must be between 0 and ``fs/2``. Default is 2.
Returns
-------
taps : ndarray
The filter coefficients of the FIR filter, as a 1-D array of length
`numtaps`.
See also
--------
firls
firwin
minimum_phase
remez
Notes
-----
From the given set of frequencies and gains, the desired response is
constructed in the frequency domain. The inverse FFT is applied to the
desired response to create the associated convolution kernel, and the
first `numtaps` coefficients of this kernel, scaled by `window`, are
returned.
The FIR filter will have linear phase. The type of filter is determined by
the value of 'numtaps` and `antisymmetric` flag.
There are four possible combinations:
- odd `numtaps`, `antisymmetric` is False, type I filter is produced
- even `numtaps`, `antisymmetric` is False, type II filter is produced
- odd `numtaps`, `antisymmetric` is True, type III filter is produced
- even `numtaps`, `antisymmetric` is True, type IV filter is produced
Magnitude response of all but type I filters are subjects to following
constraints:
- type II -- zero at the Nyquist frequency
- type III -- zero at zero and Nyquist frequencies
- type IV -- zero at zero frequency
.. versionadded:: 0.9.0
References
----------
.. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal
Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989).
(See, for example, Section 7.4.)
.. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital
Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm
Examples
--------
A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and
that decreases linearly on [0.5, 1.0] from 1 to 0:
>>> from scipy import signal
>>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
>>> print(taps[72:78])
[-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961]
"""
nyq = 0.5 * _get_fs(fs, nyq)
if len(freq) != len(gain):
raise ValueError('freq and gain must be of same length.')
if nfreqs is not None and numtaps >= nfreqs:
raise ValueError(('ntaps must be less than nfreqs, but firwin2 was '
'called with ntaps=%d and nfreqs=%s') %
(numtaps, nfreqs))
if freq[0] != 0 or freq[-1] != nyq:
raise ValueError('freq must start with 0 and end with fs/2.')
d = np.diff(freq)
if (d < 0).any():
raise ValueError('The values in freq must be nondecreasing.')
d2 = d[:-1] + d[1:]
if (d2 == 0).any():
raise ValueError('A value in freq must not occur more than twice.')
if antisymmetric:
if numtaps % 2 == 0:
ftype = 4
else:
ftype = 3
else:
if numtaps % 2 == 0:
ftype = 2
else:
ftype = 1
if ftype == 2 and gain[-1] != 0.0:
raise ValueError("A Type II filter must have zero gain at the "
"Nyquist frequency.")
elif ftype == 3 and (gain[0] != 0.0 or gain[-1] != 0.0):
raise ValueError("A Type III filter must have zero gain at zero "
"and Nyquist frequencies.")
elif ftype == 4 and gain[0] != 0.0:
raise ValueError("A Type IV filter must have zero gain at zero "
"frequency.")
if nfreqs is None:
nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2)))
# Tweak any repeated values in freq so that interp works.
eps = np.finfo(float).eps
for k in range(len(freq)):
if k < len(freq) - 1 and freq[k] == freq[k + 1]:
freq[k] = freq[k] - eps
freq[k + 1] = freq[k + 1] + eps
# Linearly interpolate the desired response on a uniform mesh `x`.
x = np.linspace(0.0, nyq, nfreqs)
fx = np.interp(x, freq, gain)
# Adjust the phases of the coefficients so that the first `ntaps` of the
# inverse FFT are the desired filter coefficients.
shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq)
if ftype > 2:
shift *= 1j
fx2 = fx * shift
# Use irfft to compute the inverse FFT.
out_full = irfft(fx2)
if window is not None:
# Create the window to apply to the filter coefficients.
from .signaltools import get_window
wind = get_window(window, numtaps, fftbins=False)
else:
wind = 1
# Keep only the first `numtaps` coefficients in `out`, and multiply by
# the window.
out = out_full[:numtaps] * wind
if ftype == 3:
out[out.size // 2] = 0.0
return out
def remez(numtaps, bands, desired, weight=None, Hz=None, type='bandpass',
maxiter=25, grid_density=16, fs=None):
"""
Calculate the minimax optimal filter using the Remez exchange algorithm.
Calculate the filter-coefficients for the finite impulse response
(FIR) filter whose transfer function minimizes the maximum error
between the desired gain and the realized gain in the specified
frequency bands using the Remez exchange algorithm.
Parameters
----------
numtaps : int
The desired number of taps in the filter. The number of taps is
the number of terms in the filter, or the filter order plus one.
bands : array_like
A monotonic sequence containing the band edges.
All elements must be non-negative and less than half the sampling
frequency as given by `fs`.
desired : array_like
A sequence half the size of bands containing the desired gain
in each of the specified bands.
weight : array_like, optional
A relative weighting to give to each band region. The length of
`weight` has to be half the length of `bands`.
Hz : scalar, optional
*Deprecated. Use `fs` instead.*
The sampling frequency in Hz. Default is 1.
type : {'bandpass', 'differentiator', 'hilbert'}, optional
The type of filter:
* 'bandpass' : flat response in bands. This is the default.
* 'differentiator' : frequency proportional response in bands.
* 'hilbert' : filter with odd symmetry, that is, type III
(for even order) or type IV (for odd order)
linear phase filters.
maxiter : int, optional
Maximum number of iterations of the algorithm. Default is 25.
grid_density : int, optional
Grid density. The dense grid used in `remez` is of size
``(numtaps + 1) * grid_density``. Default is 16.
fs : float, optional
The sampling frequency of the signal. Default is 1.
Returns
-------
out : ndarray
A rank-1 array containing the coefficients of the optimal
(in a minimax sense) filter.
See Also
--------
firls
firwin
firwin2
minimum_phase
References
----------
.. [1] J. H. McClellan and T. W. Parks, "A unified approach to the
design of optimum FIR linear phase digital filters",
IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973.
.. [2] J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer
Program for Designing Optimum FIR Linear Phase Digital
Filters", IEEE Trans. Audio Electroacoust., vol. AU-21,
pp. 506-525, 1973.
Examples
--------
For a signal sampled at 100 Hz, we want to construct a filter with a
passband at 20-40 Hz, and stop bands at 0-10 Hz and 45-50 Hz. Note that
this means that the behavior in the frequency ranges between those bands
is unspecified and may overshoot.
>>> from scipy import signal
>>> fs = 100
>>> bpass = signal.remez(72, [0, 10, 20, 40, 45, 50], [0, 1, 0], fs=fs)
>>> freq, response = signal.freqz(bpass)
>>> import matplotlib.pyplot as plt
>>> plt.semilogy(0.5*fs*freq/np.pi, np.abs(response), 'b-')
>>> plt.grid(alpha=0.25)
>>> plt.xlabel('Frequency (Hz)')
>>> plt.ylabel('Gain')
>>> plt.show()
"""
if Hz is None and fs is None:
fs = 1.0
elif Hz is not None:
if fs is not None:
raise ValueError("Values cannot be given for both 'Hz' and 'fs'.")
fs = Hz
# Convert type
try:
tnum = {'bandpass': 1, 'differentiator': 2, 'hilbert': 3}[type]
except KeyError:
raise ValueError("Type must be 'bandpass', 'differentiator', "
"or 'hilbert'")
# Convert weight
if weight is None:
weight = [1] * len(desired)
bands = np.asarray(bands).copy()
return sigtools._remez(numtaps, bands, desired, weight, tnum, fs,
maxiter, grid_density)
def firls(numtaps, bands, desired, weight=None, nyq=None, fs=None):
"""
FIR filter design using least-squares error minimization.
Calculate the filter coefficients for the linear-phase finite
impulse response (FIR) filter which has the best approximation
to the desired frequency response described by `bands` and
`desired` in the least squares sense (i.e., the integral of the
weighted mean-squared error within the specified bands is
minimized).
Parameters
----------
numtaps : int
The number of taps in the FIR filter. `numtaps` must be odd.
bands : array_like
A monotonic nondecreasing sequence containing the band edges in
Hz. All elements must be non-negative and less than or equal to
the Nyquist frequency given by `nyq`.
desired : array_like
A sequence the same size as `bands` containing the desired gain
at the start and end point of each band.
weight : array_like, optional
A relative weighting to give to each band region when solving
the least squares problem. `weight` has to be half the size of
`bands`.
nyq : float, optional
*Deprecated. Use `fs` instead.*
Nyquist frequency. Each frequency in `bands` must be between 0
and `nyq` (inclusive). Default is 1.
fs : float, optional
The sampling frequency of the signal. Each frequency in `bands`
must be between 0 and ``fs/2`` (inclusive). Default is 2.
Returns
-------
coeffs : ndarray
Coefficients of the optimal (in a least squares sense) FIR filter.
See also
--------
firwin
firwin2
minimum_phase
remez
Notes
-----
This implementation follows the algorithm given in [1]_.
As noted there, least squares design has multiple advantages:
1. Optimal in a least-squares sense.
2. Simple, non-iterative method.
3. The general solution can obtained by solving a linear
system of equations.
4. Allows the use of a frequency dependent weighting function.
This function constructs a Type I linear phase FIR filter, which
contains an odd number of `coeffs` satisfying for :math:`n < numtaps`:
.. math:: coeffs(n) = coeffs(numtaps - 1 - n)
The odd number of coefficients and filter symmetry avoid boundary
conditions that could otherwise occur at the Nyquist and 0 frequencies
(e.g., for Type II, III, or IV variants).
.. versionadded:: 0.18
References
----------
.. [1] Ivan Selesnick, Linear-Phase Fir Filter Design By Least Squares.
OpenStax CNX. Aug 9, 2005.
http://cnx.org/contents/eb1ecb35-03a9-4610-ba87-41cd771c95f2@7
Examples
--------
We want to construct a band-pass filter. Note that the behavior in the
frequency ranges between our stop bands and pass bands is unspecified,
and thus may overshoot depending on the parameters of our filter:
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> fig, axs = plt.subplots(2)
>>> fs = 10.0 # Hz
>>> desired = (0, 0, 1, 1, 0, 0)
>>> for bi, bands in enumerate(((0, 1, 2, 3, 4, 5), (0, 1, 2, 4, 4.5, 5))):
... fir_firls = signal.firls(73, bands, desired, fs=fs)
... fir_remez = signal.remez(73, bands, desired[::2], fs=fs)
... fir_firwin2 = signal.firwin2(73, bands, desired, fs=fs)
... hs = list()
... ax = axs[bi]
... for fir in (fir_firls, fir_remez, fir_firwin2):
... freq, response = signal.freqz(fir)
... hs.append(ax.semilogy(0.5*fs*freq/np.pi, np.abs(response))[0])
... for band, gains in zip(zip(bands[::2], bands[1::2]),
... zip(desired[::2], desired[1::2])):
... ax.semilogy(band, np.maximum(gains, 1e-7), 'k--', linewidth=2)
... if bi == 0:
... ax.legend(hs, ('firls', 'remez', 'firwin2'),
... loc='lower center', frameon=False)
... else:
... ax.set_xlabel('Frequency (Hz)')
... ax.grid(True)
... ax.set(title='Band-pass %d-%d Hz' % bands[2:4], ylabel='Magnitude')
...
>>> fig.tight_layout()
>>> plt.show()
""" # noqa
nyq = 0.5 * _get_fs(fs, nyq)
numtaps = int(numtaps)
if numtaps % 2 == 0 or numtaps < 1:
raise ValueError("numtaps must be odd and >= 1")
M = (numtaps-1) // 2
# normalize bands 0->1 and make it 2 columns
nyq = float(nyq)
if nyq <= 0:
raise ValueError('nyq must be positive, got %s <= 0.' % nyq)
bands = np.asarray(bands).flatten() / nyq
if len(bands) % 2 != 0:
raise ValueError("bands must contain frequency pairs.")
bands.shape = (-1, 2)
# check remaining params
desired = np.asarray(desired).flatten()
if bands.size != desired.size:
raise ValueError("desired must have one entry per frequency, got %s "
"gains for %s frequencies."
% (desired.size, bands.size))
desired.shape = (-1, 2)
if (np.diff(bands) <= 0).any() or (np.diff(bands[:, 0]) < 0).any():
raise ValueError("bands must be monotonically nondecreasing and have "
"width > 0.")
if (bands[:-1, 1] > bands[1:, 0]).any():
raise ValueError("bands must not overlap.")
if (desired < 0).any():
raise ValueError("desired must be non-negative.")
if weight is None:
weight = np.ones(len(desired))
weight = np.asarray(weight).flatten()
if len(weight) != len(desired):
raise ValueError("weight must be the same size as the number of "
"band pairs (%s)." % (len(bands),))
if (weight < 0).any():
raise ValueError("weight must be non-negative.")
# Set up the linear matrix equation to be solved, Qa = b
# We can express Q(k,n) = 0.5 Q1(k,n) + 0.5 Q2(k,n)
# where Q1(k,n)=q(k−n) and Q2(k,n)=q(k+n), i.e. a Toeplitz plus Hankel.
# We omit the factor of 0.5 above, instead adding it during coefficient
# calculation.
# We also omit the 1/π from both Q and b equations, as they cancel
# during solving.
# We have that:
# q(n) = 1/π ∫W(ω)cos(nω)dω (over 0->π)
# Using our nomalization ω=πf and with a constant weight W over each
# interval f1->f2 we get:
# q(n) = W∫cos(πnf)df (0->1) = Wf sin(πnf)/πnf
# integrated over each f1->f2 pair (i.e., value at f2 - value at f1).
n = np.arange(numtaps)[:, np.newaxis, np.newaxis]
q = np.dot(np.diff(np.sinc(bands * n) * bands, axis=2)[:, :, 0], weight)
# Now we assemble our sum of Toeplitz and Hankel
Q1 = toeplitz(q[:M+1])
Q2 = hankel(q[:M+1], q[M:])
Q = Q1 + Q2
# Now for b(n) we have that:
# b(n) = 1/π ∫ W(ω)D(ω)cos(nω)dω (over 0->π)
# Using our normalization ω=πf and with a constant weight W over each
# interval and a linear term for D(ω) we get (over each f1->f2 interval):
# b(n) = W ∫ (mf+c)cos(πnf)df
# = f(mf+c)sin(πnf)/πnf + mf**2 cos(nπf)/(πnf)**2
# integrated over each f1->f2 pair (i.e., value at f2 - value at f1).
n = n[:M + 1] # only need this many coefficients here
# Choose m and c such that we are at the start and end weights
m = (np.diff(desired, axis=1) / np.diff(bands, axis=1))
c = desired[:, [0]] - bands[:, [0]] * m
b = bands * (m*bands + c) * np.sinc(bands * n)
# Use L'Hospital's rule here for cos(nπf)/(πnf)**2 @ n=0
b[0] -= m * bands * bands / 2.
b[1:] += m * np.cos(n[1:] * np.pi * bands) / (np.pi * n[1:]) ** 2
b = np.dot(np.diff(b, axis=2)[:, :, 0], weight)
# Now we can solve the equation (use pinv because Q can be rank deficient)
a = np.dot(pinv(Q), b)
# make coefficients symmetric (linear phase)
coeffs = np.hstack((a[:0:-1], 2 * a[0], a[1:]))
return coeffs
def _dhtm(mag):
"""Compute the modified 1D discrete Hilbert transform
Parameters
----------
mag : ndarray
The magnitude spectrum. Should be 1D with an even length, and
preferably a fast length for FFT/IFFT.
"""
# Adapted based on code by Niranjan Damera-Venkata,
# Brian L. Evans and Shawn R. McCaslin (see refs for `minimum_phase`)
sig = np.zeros(len(mag))
# Leave Nyquist and DC at 0, knowing np.abs(fftfreq(N)[midpt]) == 0.5
midpt = len(mag) // 2
sig[1:midpt] = 1
sig[midpt+1:] = -1
# eventually if we want to support complex filters, we will need a
# np.abs() on the mag inside the log, and should remove the .real
recon = ifft(mag * np.exp(fft(sig * ifft(np.log(mag))))).real
return recon
def minimum_phase(h, method='homomorphic', n_fft=None):
"""Convert a linear-phase FIR filter to minimum phase
Parameters
----------
h : array
Linear-phase FIR filter coefficients.
method : {'hilbert', 'homomorphic'}
The method to use:
'homomorphic' (default)
This method [4]_ [5]_ works best with filters with an
odd number of taps, and the resulting minimum phase filter
will have a magnitude response that approximates the square
root of the the original filter's magnitude response.
'hilbert'
This method [1]_ is designed to be used with equiripple
filters (e.g., from `remez`) with unity or zero gain
regions.
n_fft : int
The number of points to use for the FFT. Should be at least a
few times larger than the signal length (see Notes).
Returns
-------
h_minimum : array
The minimum-phase version of the filter, with length
``(length(h) + 1) // 2``.
See Also
--------
firwin
firwin2
remez
Notes
-----
Both the Hilbert [1]_ or homomorphic [4]_ [5]_ methods require selection
of an FFT length to estimate the complex cepstrum of the filter.
In the case of the Hilbert method, the deviation from the ideal
spectrum ``epsilon`` is related to the number of stopband zeros
``n_stop`` and FFT length ``n_fft`` as::
epsilon = 2. * n_stop / n_fft
For example, with 100 stopband zeros and a FFT length of 2048,
``epsilon = 0.0976``. If we conservatively assume that the number of
stopband zeros is one less than the filter length, we can take the FFT
length to be the next power of 2 that satisfies ``epsilon=0.01`` as::
n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
This gives reasonable results for both the Hilbert and homomorphic
methods, and gives the value used when ``n_fft=None``.
Alternative implementations exist for creating minimum-phase filters,
including zero inversion [2]_ and spectral factorization [3]_ [4]_.
For more information, see:
http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters
Examples
--------
Create an optimal linear-phase filter, then convert it to minimum phase:
>>> from scipy.signal import remez, minimum_phase, freqz, group_delay
>>> import matplotlib.pyplot as plt
>>> freq = [0, 0.2, 0.3, 1.0]
>>> desired = [1, 0]
>>> h_linear = remez(151, freq, desired, Hz=2.)
Convert it to minimum phase:
>>> h_min_hom = minimum_phase(h_linear, method='homomorphic')
>>> h_min_hil = minimum_phase(h_linear, method='hilbert')
Compare the three filters:
>>> fig, axs = plt.subplots(4, figsize=(4, 8))
>>> for h, style, color in zip((h_linear, h_min_hom, h_min_hil),
... ('-', '-', '--'), ('k', 'r', 'c')):
... w, H = freqz(h)
... w, gd = group_delay((h, 1))
... w /= np.pi
... axs[0].plot(h, color=color, linestyle=style)
... axs[1].plot(w, np.abs(H), color=color, linestyle=style)
... axs[2].plot(w, 20 * np.log10(np.abs(H)), color=color, linestyle=style)
... axs[3].plot(w, gd, color=color, linestyle=style)
>>> for ax in axs:
... ax.grid(True, color='0.5')
... ax.fill_between(freq[1:3], *ax.get_ylim(), color='#ffeeaa', zorder=1)
>>> axs[0].set(xlim=[0, len(h_linear) - 1], ylabel='Amplitude', xlabel='Samples')
>>> axs[1].legend(['Linear', 'Min-Hom', 'Min-Hil'], title='Phase')
>>> for ax, ylim in zip(axs[1:], ([0, 1.1], [-150, 10], [-60, 60])):
... ax.set(xlim=[0, 1], ylim=ylim, xlabel='Frequency')
>>> axs[1].set(ylabel='Magnitude')
>>> axs[2].set(ylabel='Magnitude (dB)')
>>> axs[3].set(ylabel='Group delay')
>>> plt.tight_layout()
References
----------
.. [1] N. Damera-Venkata and B. L. Evans, "Optimal design of real and
complex minimum phase digital FIR filters," Acoustics, Speech,
and Signal Processing, 1999. Proceedings., 1999 IEEE International
Conference on, Phoenix, AZ, 1999, pp. 1145-1148 vol.3.
doi: 10.1109/ICASSP.1999.756179
.. [2] X. Chen and T. W. Parks, "Design of optimal minimum phase FIR
filters by direct factorization," Signal Processing,
vol. 10, no. 4, pp. 369-383, Jun. 1986.
.. [3] T. Saramaki, "Finite Impulse Response Filter Design," in
Handbook for Digital Signal Processing, chapter 4,
New York: Wiley-Interscience, 1993.
.. [4] J. S. Lim, Advanced Topics in Signal Processing.
Englewood Cliffs, N.J.: Prentice Hall, 1988.
.. [5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,
"Discrete-Time Signal Processing," 2nd edition.
Upper Saddle River, N.J.: Prentice Hall, 1999.
""" # noqa
h = np.asarray(h)
if np.iscomplexobj(h):
raise ValueError('Complex filters not supported')
if h.ndim != 1 or h.size <= 2:
raise ValueError('h must be 1D and at least 2 samples long')
n_half = len(h) // 2
if not np.allclose(h[-n_half:][::-1], h[:n_half]):
warnings.warn('h does not appear to by symmetric, conversion may '
'fail', RuntimeWarning)
if not isinstance(method, string_types) or method not in \
('homomorphic', 'hilbert',):
raise ValueError('method must be "homomorphic" or "hilbert", got %r'
% (method,))
if n_fft is None:
n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
n_fft = int(n_fft)
if n_fft < len(h):
raise ValueError('n_fft must be at least len(h)==%s' % len(h))
if method == 'hilbert':
w = np.arange(n_fft) * (2 * np.pi / n_fft * n_half)
H = np.real(fft(h, n_fft) * np.exp(1j * w))
dp = max(H) - 1
ds = 0 - min(H)
S = 4. / (np.sqrt(1+dp+ds) + np.sqrt(1-dp+ds)) ** 2
H += ds
H *= S
H = np.sqrt(H, out=H)
H += 1e-10 # ensure that the log does not explode
h_minimum = _dhtm(H)
else: # method == 'homomorphic'
# zero-pad; calculate the DFT
h_temp = np.abs(fft(h, n_fft))
# take 0.25*log(|H|**2) = 0.5*log(|H|)
h_temp += 1e-7 * h_temp[h_temp > 0].min() # don't let log blow up
np.log(h_temp, out=h_temp)
h_temp *= 0.5
# IDFT
h_temp = ifft(h_temp).real
# multiply pointwise by the homomorphic filter
# lmin[n] = 2u[n] - d[n]
win = np.zeros(n_fft)
win[0] = 1
stop = (len(h) + 1) // 2
win[1:stop] = 2
if len(h) % 2:
win[stop] = 1
h_temp *= win
h_temp = ifft(np.exp(fft(h_temp)))
h_minimum = h_temp.real
n_out = n_half + len(h) % 2
return h_minimum[:n_out]
|