File: test_peak_finding.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (733 lines) | stat: -rw-r--r-- 28,103 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
from __future__ import division, print_function, absolute_import

import copy

import numpy as np
from numpy.testing import (assert_, assert_equal, assert_allclose,
    assert_array_equal)
import pytest
from pytest import raises

from scipy._lib.six import xrange
from scipy.signal._peak_finding import (argrelmax, argrelmin,
    peak_prominences, peak_widths, _unpack_condition_args, find_peaks,
    find_peaks_cwt, _identify_ridge_lines)
from scipy.signal._peak_finding_utils import _argmaxima1d


def _gen_gaussians(center_locs, sigmas, total_length):
    xdata = np.arange(0, total_length).astype(float)
    out_data = np.zeros(total_length, dtype=float)
    for ind, sigma in enumerate(sigmas):
        tmp = (xdata - center_locs[ind]) / sigma
        out_data += np.exp(-(tmp**2))
    return out_data


def _gen_gaussians_even(sigmas, total_length):
    num_peaks = len(sigmas)
    delta = total_length / (num_peaks + 1)
    center_locs = np.linspace(delta, total_length - delta, num=num_peaks).astype(int)
    out_data = _gen_gaussians(center_locs, sigmas, total_length)
    return out_data, center_locs


def _gen_ridge_line(start_locs, max_locs, length, distances, gaps):
    """
    Generate coordinates for a ridge line.

    Will be a series of coordinates, starting a start_loc (length 2).
    The maximum distance between any adjacent columns will be
    `max_distance`, the max distance between adjacent rows
    will be `map_gap'.

    `max_locs` should be the size of the intended matrix. The
    ending coordinates are guaranteed to be less than `max_locs`,
    although they may not approach `max_locs` at all.
    """

    def keep_bounds(num, max_val):
        out = max(num, 0)
        out = min(out, max_val)
        return out

    gaps = copy.deepcopy(gaps)
    distances = copy.deepcopy(distances)

    locs = np.zeros([length, 2], dtype=int)
    locs[0, :] = start_locs
    total_length = max_locs[0] - start_locs[0] - sum(gaps)
    if total_length < length:
        raise ValueError('Cannot generate ridge line according to constraints')
    dist_int = length / len(distances) - 1
    gap_int = length / len(gaps) - 1
    for ind in xrange(1, length):
        nextcol = locs[ind - 1, 1]
        nextrow = locs[ind - 1, 0] + 1
        if (ind % dist_int == 0) and (len(distances) > 0):
            nextcol += ((-1)**ind)*distances.pop()
        if (ind % gap_int == 0) and (len(gaps) > 0):
            nextrow += gaps.pop()
        nextrow = keep_bounds(nextrow, max_locs[0])
        nextcol = keep_bounds(nextcol, max_locs[1])
        locs[ind, :] = [nextrow, nextcol]

    return [locs[:, 0], locs[:, 1]]


class TestArgmaxima1d(object):

    def test_empty(self):
        """Test with empty signal."""
        x = np.array([], dtype=np.float64)
        maxima = _argmaxima1d(x)
        assert_equal(maxima, np.array([]))
        assert_(maxima.base is None)

    def test_linear(self):
        """Test with linear signal."""
        x = np.linspace(0, 100)
        maxima = _argmaxima1d(x)
        assert_equal(maxima, np.array([]))
        assert_(maxima.base is None)

    def test_simple(self):
        """Test with simple signal."""
        x = np.linspace(-10, 10, 50)
        x[2::3] += 1
        maxima = _argmaxima1d(x)
        assert_equal(maxima, np.arange(2, 50, 3))
        assert_(maxima.base is None)

    def test_flat_maxima(self):
        """Test if flat maxima are detected correctly."""
        x = np.array([-1.3, 0, 1, 0, 2, 2, 0, 3, 3, 3, 0, 4, 4, 4, 4, 0, 5])
        maxima = _argmaxima1d(x)
        assert_equal(maxima, np.array([2, 4, 8, 12]))
        assert_(maxima.base is None)

    @pytest.mark.parametrize(
        'x', [np.array([1., 0, 2]), np.array([3., 3, 0, 4, 4]),
              np.array([5., 5, 5, 0, 6, 6, 6])])
    def test_signal_edges(self, x):
        """Test if correct behavior on signal edges."""
        maxima = _argmaxima1d(x)
        assert_equal(maxima, np.array([]))
        assert_(maxima.base is None)

    def test_exceptions(self):
        """Test input validation and raised exceptions."""
        with raises(ValueError, match="wrong number of dimensions"):
            _argmaxima1d(np.ones((1, 1)))
        with raises(ValueError, match="expected 'float64_t'"):
            _argmaxima1d(np.ones(1, dtype=int))
        with raises(TypeError, match="list"):
            _argmaxima1d([1., 2.])
        with raises(TypeError, match="'x' must not be None"):
            _argmaxima1d(None)


class TestRidgeLines(object):

    def test_empty(self):
        test_matr = np.zeros([20, 100])
        lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
        assert_(len(lines) == 0)

    def test_minimal(self):
        test_matr = np.zeros([20, 100])
        test_matr[0, 10] = 1
        lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
        assert_(len(lines) == 1)

        test_matr = np.zeros([20, 100])
        test_matr[0:2, 10] = 1
        lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
        assert_(len(lines) == 1)

    def test_single_pass(self):
        distances = [0, 1, 2, 5]
        gaps = [0, 1, 2, 0, 1]
        test_matr = np.zeros([20, 50]) + 1e-12
        length = 12
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_distances = max(distances)*np.ones(20)
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1)
        assert_array_equal(identified_lines, [line])

    def test_single_bigdist(self):
        distances = [0, 1, 2, 5]
        gaps = [0, 1, 2, 4]
        test_matr = np.zeros([20, 50])
        length = 12
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_dist = 3
        max_distances = max_dist*np.ones(20)
        #This should get 2 lines, since the distance is too large
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1)
        assert_(len(identified_lines) == 2)

        for iline in identified_lines:
            adists = np.diff(iline[1])
            np.testing.assert_array_less(np.abs(adists), max_dist)

            agaps = np.diff(iline[0])
            np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)

    def test_single_biggap(self):
        distances = [0, 1, 2, 5]
        max_gap = 3
        gaps = [0, 4, 2, 1]
        test_matr = np.zeros([20, 50])
        length = 12
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_dist = 6
        max_distances = max_dist*np.ones(20)
        #This should get 2 lines, since the gap is too large
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
        assert_(len(identified_lines) == 2)

        for iline in identified_lines:
            adists = np.diff(iline[1])
            np.testing.assert_array_less(np.abs(adists), max_dist)

            agaps = np.diff(iline[0])
            np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)

    def test_single_biggaps(self):
        distances = [0]
        max_gap = 1
        gaps = [3, 6]
        test_matr = np.zeros([50, 50])
        length = 30
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_dist = 1
        max_distances = max_dist*np.ones(50)
        #This should get 3 lines, since the gaps are too large
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
        assert_(len(identified_lines) == 3)

        for iline in identified_lines:
            adists = np.diff(iline[1])
            np.testing.assert_array_less(np.abs(adists), max_dist)

            agaps = np.diff(iline[0])
            np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)


class TestArgrel(object):

    def test_empty(self):
        # Regression test for gh-2832.
        # When there are no relative extrema, make sure that
        # the number of empty arrays returned matches the
        # dimension of the input.

        empty_array = np.array([], dtype=int)

        z1 = np.zeros(5)

        i = argrelmin(z1)
        assert_equal(len(i), 1)
        assert_array_equal(i[0], empty_array)

        z2 = np.zeros((3,5))

        row, col = argrelmin(z2, axis=0)
        assert_array_equal(row, empty_array)
        assert_array_equal(col, empty_array)

        row, col = argrelmin(z2, axis=1)
        assert_array_equal(row, empty_array)
        assert_array_equal(col, empty_array)

    def test_basic(self):
        # Note: the docstrings for the argrel{min,max,extrema} functions
        # do not give a guarantee of the order of the indices, so we'll
        # sort them before testing.

        x = np.array([[1, 2, 2, 3, 2],
                      [2, 1, 2, 2, 3],
                      [3, 2, 1, 2, 2],
                      [2, 3, 2, 1, 2],
                      [1, 2, 3, 2, 1]])

        row, col = argrelmax(x, axis=0)
        order = np.argsort(row)
        assert_equal(row[order], [1, 2, 3])
        assert_equal(col[order], [4, 0, 1])

        row, col = argrelmax(x, axis=1)
        order = np.argsort(row)
        assert_equal(row[order], [0, 3, 4])
        assert_equal(col[order], [3, 1, 2])

        row, col = argrelmin(x, axis=0)
        order = np.argsort(row)
        assert_equal(row[order], [1, 2, 3])
        assert_equal(col[order], [1, 2, 3])

        row, col = argrelmin(x, axis=1)
        order = np.argsort(row)
        assert_equal(row[order], [1, 2, 3])
        assert_equal(col[order], [1, 2, 3])

    def test_highorder(self):
        order = 2
        sigmas = [1.0, 2.0, 10.0, 5.0, 15.0]
        test_data, act_locs = _gen_gaussians_even(sigmas, 500)
        test_data[act_locs + order] = test_data[act_locs]*0.99999
        test_data[act_locs - order] = test_data[act_locs]*0.99999
        rel_max_locs = argrelmax(test_data, order=order, mode='clip')[0]

        assert_(len(rel_max_locs) == len(act_locs))
        assert_((rel_max_locs == act_locs).all())

    def test_2d_gaussians(self):
        sigmas = [1.0, 2.0, 10.0]
        test_data, act_locs = _gen_gaussians_even(sigmas, 100)
        rot_factor = 20
        rot_range = np.arange(0, len(test_data)) - rot_factor
        test_data_2 = np.vstack([test_data, test_data[rot_range]])
        rel_max_rows, rel_max_cols = argrelmax(test_data_2, axis=1, order=1)

        for rw in xrange(0, test_data_2.shape[0]):
            inds = (rel_max_rows == rw)

            assert_(len(rel_max_cols[inds]) == len(act_locs))
            assert_((act_locs == (rel_max_cols[inds] - rot_factor*rw)).all())


class TestPeakProminences(object):

    def test_empty(self):
        """
        Test if an empty array is returned if no peaks are provided.
        """
        out = peak_prominences([1, 2, 3], [])
        for arr, dtype in zip(out, [np.float64, np.intp, np.intp]):
            assert_(arr.size == 0)
            assert_(arr.dtype == dtype)

        out = peak_prominences([], [])
        for arr, dtype in zip(out, [np.float64, np.intp, np.intp]):
            assert_(arr.size == 0)
            assert_(arr.dtype == dtype)

    def test_basic(self):
        """
        Test if height of prominences is correctly calculated in signal with
        rising baseline (peak widths are 1 sample).
        """
        # Prepare basic signal
        x = np.array([-1, 1.2, 1.2, 1, 3.2, 1.3, 2.88, 2.1])
        peaks = np.array([1, 2, 4, 6])
        lbases = np.array([0, 0, 0, 5])
        rbases = np.array([3, 3, 5, 7])
        proms = x[peaks] - np.max([x[lbases], x[rbases]], axis=0)
        # Test if calculation matches handcrafted result
        out = peak_prominences(x, peaks)
        assert_equal(out[0], proms)
        assert_equal(out[1], lbases)
        assert_equal(out[2], rbases)

    def test_edge_cases(self):
        """
        Test edge cases.
        """
        # Peaks have same height, prominence and bases
        x = [0, 2, 1, 2, 1, 2, 0]
        peaks = [1, 3, 5]
        proms, lbases, rbases = peak_prominences(x, peaks)
        assert_equal(proms, [2, 2, 2])
        assert_equal(lbases, [0, 0, 0])
        assert_equal(rbases, [6, 6, 6])

        # Peaks have same height & prominence but different bases
        x = [0, 1, 0, 1, 0, 1, 0]
        peaks = np.array([1, 3, 5])
        proms, lbases, rbases = peak_prominences(x, peaks)
        assert_equal(proms, [1, 1, 1])
        assert_equal(lbases, peaks - 1)
        assert_equal(rbases, peaks + 1)

    def test_non_contiguous(self):
        """
        Test with non-C-contiguous input arrays.
        """
        x = np.repeat([-9, 9, 9, 0, 3, 1], 2)
        peaks = np.repeat([1, 2, 4], 2)
        proms, lbases, rbases = peak_prominences(x[::2], peaks[::2])
        assert_equal(proms, [9, 9, 2])
        assert_equal(lbases, [0, 0, 3])
        assert_equal(rbases, [3, 3, 5])

    def test_wlen(self):
        """
        Test if wlen actually shrinks the evaluation range correctly.
        """
        x = [0, 1, 2, 3, 1, 0, -1]
        peak = [3]
        # Test rounding behavior of wlen
        assert_equal(peak_prominences(x, peak), [3., 0, 6])
        for wlen, i in [(8, 0), (7, 0), (6, 0), (5, 1), (3.2, 1), (3, 2), (1.1, 2)]:
            assert_equal(peak_prominences(x, peak, wlen), [3. - i, 0 + i, 6 - i])

    def test_raises(self):
        """
        Verfiy that argument validation works as intended.
        """
        # x with dimension > 1
        with raises(ValueError, match='dimension'):
            peak_prominences([[0, 1, 1, 0]], [1, 2])
        # peaks with dimension > 1
        with raises(ValueError, match='dimension'):
            peak_prominences([0, 1, 1, 0], [[1, 2]])
        # x with dimension < 1
        with raises(ValueError, match='dimension'):
            peak_prominences(3, [0,])
        # empty x with peaks supplied
        with raises(ValueError, match='not a valid peak'):
            peak_prominences([], [1, 2])
        # invalid peaks
        for p in [-1, 0, 1, 2, 3]:
            with raises(ValueError, match=str(p) + ' is not a valid peak'):
                peak_prominences([1, 0, 2], [p,])
        # peaks is not cast-able to np.intp
        with raises(TypeError, match='Cannot safely cast'):
            peak_prominences([0, 1, 1, 0], [1.1, 2.3])
        # wlen < 3
        with raises(ValueError, match='wlen'):
            peak_prominences(np.arange(10), [3, 5], wlen=1)


class TestPeakWidths(object):

    def test_empty(self):
        """
        Test if an empty array is returned if no peaks are provided.
        """
        widths = peak_widths([], [])[0]
        assert_(isinstance(widths, np.ndarray))
        assert_equal(widths.size, 0)
        widths = peak_widths([1, 2, 3], [])[0]
        assert_(isinstance(widths, np.ndarray))
        assert_equal(widths.size, 0)
        out = peak_widths([], [])
        for arr in out:
            assert_(isinstance(arr, np.ndarray))
            assert_equal(arr.size, 0)

    def test_basic(self):
        """
        Test a simple use case with easy to verify results at different relative
        heights.
        """
        x = np.array([1, 0, 1, 2, 1, 0, -1])
        prominence = 2
        for rel_height, width_true, lip_true, rip_true in [
            (0., 0., 3., 3.),
            (0.25, 1., 2.5, 3.5),
            (0.5, 2., 2., 4.),
            (0.75, 3., 1.5, 4.5),
            (1., 4., 1., 5.),
            (2., 5., 1., 6.),
            (3., 5., 1., 6.)
        ]:
            width_calc, height, lip_calc, rip_calc = peak_widths(
                x, [3], rel_height)
            assert_allclose(width_calc, width_true)
            assert_allclose(height, 2 - rel_height * prominence)
            assert_allclose(lip_calc, lip_true)
            assert_allclose(rip_calc, rip_true)

    def test_non_contiguous(self):
        """
        Test with non-C-contiguous input arrays.
        """
        x = np.repeat([0, 100, 50], 4)
        peaks = np.repeat([1], 3)
        result = peak_widths(x[::4], peaks[::3])
        assert_equal(result, [0.75, 75, 0.75, 1.5])

    def test_exceptions(self):
        """
        Verfiy that argument validation works as intended.
        """
        with raises(ValueError, match='dimension'):
            # x with dimension > 1
            peak_widths(np.zeros((3, 4)), np.ones(3))
        with raises(ValueError, match='dimension'):
            # x with dimension < 1
            peak_widths(3, [0])
        with raises(ValueError, match='dimension'):
            # peaks with dimension > 1
            peak_widths(np.arange(10), np.ones((3, 2), dtype=np.intp))
        with raises(ValueError, match='dimension'):
            # peaks with dimension < 1
            peak_widths(np.arange(10), 3)
        with raises(ValueError, match='not a valid peak'):
            # peak pos exceeds x.size
            peak_widths(np.arange(10), [8, 11])
        with raises(ValueError, match='not a valid peak'):
            # empty x with peaks supplied
            peak_widths([], [1, 2])
        with raises(TypeError, match='Cannot safely cast'):
            # peak cannot be safely casted to intp
            peak_widths(np.arange(10), [1.1, 2.3])
        with raises(ValueError, match='rel_height'):
            # rel_height is < 0
            peak_widths(np.arange(10), [1, 2], rel_height=-1)
        with raises(TypeError, match='None'):
            # prominence data contains None
            peak_widths([1, 2, 1], [1], prominence_data=(None, None, None))

    def test_mismatching_prominence_data(self):
        """Test with mismatching peak and / or prominence data."""
        x = [0, 1, 0]
        peak = [1]
        for i, (peaks, left_bases, right_bases) in enumerate([
            ((1.,), (-1,), (2,)),  # left base not in x
            ((1.,), (0,), (3,)),  # right base not in x
            ((1.,), (1,), (2,)),  # left base same as peak
            ((1.,), (0,), (1,)),  # right base same as peak
            ((1., 1.), (0, 0), (2, 2)),  # array shapes don't match peaks
            ((1., 1.), (0,), (2,)),  # arrays with different shapes
            ((1.,), (0, 0), (2,)),  # arrays with different shapes
            ((1.,), (0,), (2, 2))  # arrays with different shapes
        ]):
            # Make sure input is matches output of signal.prominences
            prominence_data = (np.array(peaks, dtype=np.float64),
                               np.array(left_bases, dtype=np.intp),
                               np.array(right_bases, dtype=np.intp))
            # Test for correct exception
            if i < 4:
                match = "prominence data is invalid for peak"
            else:
                match = "arrays in `prominence_data` must have the same shape"
            with raises(ValueError, match=match):
                peak_widths(x, peak, prominence_data=prominence_data)

    def test_intersection_rules(self):
        """Test if x == eval_height counts as an intersection."""
        # Flatt peak with two possible intersection points if evaluated at 1
        x = [0, 1, 2, 1, 3, 3, 3, 1, 2, 1, 0]
        # relative height is 0 -> width is 0 as well
        assert_allclose(peak_widths(x, peaks=[5], rel_height=0),
                        [(0.,), (3.,), (5.,), (5.,)])
        # width_height == x counts as intersection -> nearest 1 is chosen
        assert_allclose(peak_widths(x, peaks=[5], rel_height=2/3),
                        [(4.,), (1.,), (3.,), (7.,)])


def test_unpack_condition_args():
    """
    Verify parsing of condition arguments for `scipy.signal.find_peaks` function.
    """
    x = np.arange(10)
    amin_true = x
    amax_true = amin_true + 10
    peaks = amin_true[1::2]

    # Test unpacking with None or interval
    assert_((None, None) == _unpack_condition_args((None, None), x, peaks))
    assert_((1, None) == _unpack_condition_args(1, x, peaks))
    assert_((1, None) == _unpack_condition_args((1, None), x, peaks))
    assert_((None, 2) == _unpack_condition_args((None, 2), x, peaks))
    assert_((3., 4.5) == _unpack_condition_args((3., 4.5), x, peaks))

    # Test if borders are correctly reduced with `peaks`
    amin_calc, amax_calc = _unpack_condition_args((amin_true, amax_true), x, peaks)
    assert_equal(amin_calc, amin_true[peaks])
    assert_equal(amax_calc, amax_true[peaks])

    # Test raises if array borders don't match x
    with raises(ValueError, match="array size of lower"):
        _unpack_condition_args(amin_true, np.arange(11), peaks)
    with raises(ValueError, match="array size of upper"):
        _unpack_condition_args((None, amin_true), np.arange(11), peaks)


class TestFindPeaks(object):

    # Keys of optionally returned properties
    property_keys = {'peak_heights', 'left_thresholds', 'right_thresholds',
                     'prominences', 'left_bases', 'right_bases', 'widths',
                     'width_heights', 'left_ips', 'right_ips'}

    def test_constant(self):
        """
        Test behavior for signal without local maxima.
        """
        open_interval = (None, None)
        peaks, props = find_peaks(np.ones(10),
                                  height=open_interval, threshold=open_interval,
                                  prominence=open_interval, width=open_interval)
        assert_(peaks.size == 0)
        for key in self.property_keys:
            assert_(props[key].size == 0)

    def test_height_condition(self):
        """
        Test height condition for peaks.
        """
        x = (0., 1/3, 0., 2.5, 0, 4., 0)
        peaks, props = find_peaks(x, height=(None, None))
        assert_equal(peaks, np.array([1, 3, 5]))
        assert_equal(props['peak_heights'], np.array([1/3, 2.5, 4.]))
        assert_equal(find_peaks(x, height=0.5)[0], np.array([3, 5]))
        assert_equal(find_peaks(x, height=(None, 3))[0], np.array([1, 3]))
        assert_equal(find_peaks(x, height=(2, 3))[0], np.array([3]))

    def test_threshold_condition(self):
        """
        Test threshold condition for peaks.
        """
        x = (0, 2, 1, 4, -1)
        peaks, props = find_peaks(x, threshold=(None, None))
        assert_equal(peaks, np.array([1, 3]))
        assert_equal(props['left_thresholds'], np.array([2, 3]))
        assert_equal(props['right_thresholds'], np.array([1, 5]))
        assert_equal(find_peaks(x, threshold=2)[0], np.array([3]))
        assert_equal(find_peaks(x, threshold=3.5)[0], np.array([]))
        assert_equal(find_peaks(x, threshold=(None, 5))[0], np.array([1, 3]))
        assert_equal(find_peaks(x, threshold=(None, 4))[0], np.array([1]))
        assert_equal(find_peaks(x, threshold=(2, 4))[0], np.array([]))

    def test_distance_condition(self):
        """
        Test distance condition for peaks.
        """
        # Peaks of different height with constant distance 3
        peaks_all = np.arange(1, 21, 3)
        x = np.zeros(21)
        x[peaks_all] += np.linspace(1, 2, peaks_all.size)

        # Test if peaks with "minimal" distance are still selected (distance = 3)
        assert_equal(find_peaks(x, distance=3)[0], peaks_all)

        # Select every second peak (distance > 3)
        peaks_subset = find_peaks(x, distance=3.0001)[0]
        # Test if peaks_subset is subset of peaks_all
        assert_(
            np.setdiff1d(peaks_subset, peaks_all, assume_unique=True).size == 0
        )
        # Test if every second peak was removed
        assert_equal(np.diff(peaks_subset), 6)

        # Test priority of peak removal
        x = [-2, 1, -1, 0, -3]
        peaks_subset = find_peaks(x, distance=10)[0]  # use distance > x size
        assert_(peaks_subset.size == 1 and peaks_subset[0] == 1)

    def test_prominence_condition(self):
        """
        Test prominence condition for peaks.
        """
        x = np.linspace(0, 10, 100)
        peaks_true = np.arange(1, 99, 2)
        offset = np.linspace(1, 10, peaks_true.size)
        x[peaks_true] += offset
        prominences = x[peaks_true] - x[peaks_true + 1]
        interval = (3, 9)
        keep = np.where(
            (interval[0] <= prominences) & (prominences <= interval[1]))

        peaks_calc, properties = find_peaks(x, prominence=interval)
        assert_equal(peaks_calc, peaks_true[keep])
        assert_equal(properties['prominences'], prominences[keep])
        assert_equal(properties['left_bases'], 0)
        assert_equal(properties['right_bases'], peaks_true[keep] + 1)

    def test_width_condition(self):
        """
        Test width condition for peaks.
        """
        x = np.array([1, 0, 1, 2, 1, 0, -1, 4, 0])
        peaks, props = find_peaks(x, width=(None, 2), rel_height=0.75)
        assert_equal(peaks.size, 1)
        assert_equal(peaks, 7)
        assert_allclose(props['widths'], 1.35)
        assert_allclose(props['width_heights'], 1.)
        assert_allclose(props['left_ips'], 6.4)
        assert_allclose(props['right_ips'], 7.75)

    def test_properties(self):
        """
        Test returned properties.
        """
        open_interval = (None, None)
        x = [0, 1, 0, 2, 1.5, 0, 3, 0, 5, 9]
        peaks, props = find_peaks(x,
                                  height=open_interval, threshold=open_interval,
                                  prominence=open_interval, width=open_interval)
        assert_(len(props) == len(self.property_keys))
        for key in self.property_keys:
            assert_(peaks.size == props[key].size)

    def test_raises(self):
        """
        Test exceptions raised by function.
        """
        with raises(ValueError, match="dimension"):
            find_peaks(np.array(1))
        with raises(ValueError, match="dimension"):
            find_peaks(np.ones((2, 2)))
        with raises(ValueError, match="distance"):
            find_peaks(np.arange(10), distance=-1)


class TestFindPeaksCwt(object):

    def test_find_peaks_exact(self):
        """
        Generate a series of gaussians and attempt to find the peak locations.
        """
        sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
        num_points = 500
        test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
        widths = np.arange(0.1, max(sigmas))
        found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=0,
                                         min_length=None)
        np.testing.assert_array_equal(found_locs, act_locs,
                        "Found maximum locations did not equal those expected")

    def test_find_peaks_withnoise(self):
        """
        Verify that peak locations are (approximately) found
        for a series of gaussians with added noise.
        """
        sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
        num_points = 500
        test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
        widths = np.arange(0.1, max(sigmas))
        noise_amp = 0.07
        np.random.seed(18181911)
        test_data += (np.random.rand(num_points) - 0.5)*(2*noise_amp)
        found_locs = find_peaks_cwt(test_data, widths, min_length=15,
                                         gap_thresh=1, min_snr=noise_amp / 5)

        np.testing.assert_equal(len(found_locs), len(act_locs), 'Different number' +
                                'of peaks found than expected')
        diffs = np.abs(found_locs - act_locs)
        max_diffs = np.array(sigmas) / 5
        np.testing.assert_array_less(diffs, max_diffs, 'Maximum location differed' +
                                     'by more than %s' % (max_diffs))

    def test_find_peaks_nopeak(self):
        """
        Verify that no peak is found in
        data that's just noise.
        """
        noise_amp = 1.0
        num_points = 100
        np.random.seed(181819141)
        test_data = (np.random.rand(num_points) - 0.5)*(2*noise_amp)
        widths = np.arange(10, 50)
        found_locs = find_peaks_cwt(test_data, widths, min_snr=5, noise_perc=30)
        np.testing.assert_equal(len(found_locs), 0)