1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
from __future__ import division, print_function, absolute_import
import copy
import numpy as np
from numpy.testing import (assert_, assert_equal, assert_allclose,
assert_array_equal)
import pytest
from pytest import raises
from scipy._lib.six import xrange
from scipy.signal._peak_finding import (argrelmax, argrelmin,
peak_prominences, peak_widths, _unpack_condition_args, find_peaks,
find_peaks_cwt, _identify_ridge_lines)
from scipy.signal._peak_finding_utils import _argmaxima1d
def _gen_gaussians(center_locs, sigmas, total_length):
xdata = np.arange(0, total_length).astype(float)
out_data = np.zeros(total_length, dtype=float)
for ind, sigma in enumerate(sigmas):
tmp = (xdata - center_locs[ind]) / sigma
out_data += np.exp(-(tmp**2))
return out_data
def _gen_gaussians_even(sigmas, total_length):
num_peaks = len(sigmas)
delta = total_length / (num_peaks + 1)
center_locs = np.linspace(delta, total_length - delta, num=num_peaks).astype(int)
out_data = _gen_gaussians(center_locs, sigmas, total_length)
return out_data, center_locs
def _gen_ridge_line(start_locs, max_locs, length, distances, gaps):
"""
Generate coordinates for a ridge line.
Will be a series of coordinates, starting a start_loc (length 2).
The maximum distance between any adjacent columns will be
`max_distance`, the max distance between adjacent rows
will be `map_gap'.
`max_locs` should be the size of the intended matrix. The
ending coordinates are guaranteed to be less than `max_locs`,
although they may not approach `max_locs` at all.
"""
def keep_bounds(num, max_val):
out = max(num, 0)
out = min(out, max_val)
return out
gaps = copy.deepcopy(gaps)
distances = copy.deepcopy(distances)
locs = np.zeros([length, 2], dtype=int)
locs[0, :] = start_locs
total_length = max_locs[0] - start_locs[0] - sum(gaps)
if total_length < length:
raise ValueError('Cannot generate ridge line according to constraints')
dist_int = length / len(distances) - 1
gap_int = length / len(gaps) - 1
for ind in xrange(1, length):
nextcol = locs[ind - 1, 1]
nextrow = locs[ind - 1, 0] + 1
if (ind % dist_int == 0) and (len(distances) > 0):
nextcol += ((-1)**ind)*distances.pop()
if (ind % gap_int == 0) and (len(gaps) > 0):
nextrow += gaps.pop()
nextrow = keep_bounds(nextrow, max_locs[0])
nextcol = keep_bounds(nextcol, max_locs[1])
locs[ind, :] = [nextrow, nextcol]
return [locs[:, 0], locs[:, 1]]
class TestArgmaxima1d(object):
def test_empty(self):
"""Test with empty signal."""
x = np.array([], dtype=np.float64)
maxima = _argmaxima1d(x)
assert_equal(maxima, np.array([]))
assert_(maxima.base is None)
def test_linear(self):
"""Test with linear signal."""
x = np.linspace(0, 100)
maxima = _argmaxima1d(x)
assert_equal(maxima, np.array([]))
assert_(maxima.base is None)
def test_simple(self):
"""Test with simple signal."""
x = np.linspace(-10, 10, 50)
x[2::3] += 1
maxima = _argmaxima1d(x)
assert_equal(maxima, np.arange(2, 50, 3))
assert_(maxima.base is None)
def test_flat_maxima(self):
"""Test if flat maxima are detected correctly."""
x = np.array([-1.3, 0, 1, 0, 2, 2, 0, 3, 3, 3, 0, 4, 4, 4, 4, 0, 5])
maxima = _argmaxima1d(x)
assert_equal(maxima, np.array([2, 4, 8, 12]))
assert_(maxima.base is None)
@pytest.mark.parametrize(
'x', [np.array([1., 0, 2]), np.array([3., 3, 0, 4, 4]),
np.array([5., 5, 5, 0, 6, 6, 6])])
def test_signal_edges(self, x):
"""Test if correct behavior on signal edges."""
maxima = _argmaxima1d(x)
assert_equal(maxima, np.array([]))
assert_(maxima.base is None)
def test_exceptions(self):
"""Test input validation and raised exceptions."""
with raises(ValueError, match="wrong number of dimensions"):
_argmaxima1d(np.ones((1, 1)))
with raises(ValueError, match="expected 'float64_t'"):
_argmaxima1d(np.ones(1, dtype=int))
with raises(TypeError, match="list"):
_argmaxima1d([1., 2.])
with raises(TypeError, match="'x' must not be None"):
_argmaxima1d(None)
class TestRidgeLines(object):
def test_empty(self):
test_matr = np.zeros([20, 100])
lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
assert_(len(lines) == 0)
def test_minimal(self):
test_matr = np.zeros([20, 100])
test_matr[0, 10] = 1
lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
assert_(len(lines) == 1)
test_matr = np.zeros([20, 100])
test_matr[0:2, 10] = 1
lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
assert_(len(lines) == 1)
def test_single_pass(self):
distances = [0, 1, 2, 5]
gaps = [0, 1, 2, 0, 1]
test_matr = np.zeros([20, 50]) + 1e-12
length = 12
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_distances = max(distances)*np.ones(20)
identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1)
assert_array_equal(identified_lines, [line])
def test_single_bigdist(self):
distances = [0, 1, 2, 5]
gaps = [0, 1, 2, 4]
test_matr = np.zeros([20, 50])
length = 12
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_dist = 3
max_distances = max_dist*np.ones(20)
#This should get 2 lines, since the distance is too large
identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1)
assert_(len(identified_lines) == 2)
for iline in identified_lines:
adists = np.diff(iline[1])
np.testing.assert_array_less(np.abs(adists), max_dist)
agaps = np.diff(iline[0])
np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)
def test_single_biggap(self):
distances = [0, 1, 2, 5]
max_gap = 3
gaps = [0, 4, 2, 1]
test_matr = np.zeros([20, 50])
length = 12
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_dist = 6
max_distances = max_dist*np.ones(20)
#This should get 2 lines, since the gap is too large
identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
assert_(len(identified_lines) == 2)
for iline in identified_lines:
adists = np.diff(iline[1])
np.testing.assert_array_less(np.abs(adists), max_dist)
agaps = np.diff(iline[0])
np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)
def test_single_biggaps(self):
distances = [0]
max_gap = 1
gaps = [3, 6]
test_matr = np.zeros([50, 50])
length = 30
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_dist = 1
max_distances = max_dist*np.ones(50)
#This should get 3 lines, since the gaps are too large
identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
assert_(len(identified_lines) == 3)
for iline in identified_lines:
adists = np.diff(iline[1])
np.testing.assert_array_less(np.abs(adists), max_dist)
agaps = np.diff(iline[0])
np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)
class TestArgrel(object):
def test_empty(self):
# Regression test for gh-2832.
# When there are no relative extrema, make sure that
# the number of empty arrays returned matches the
# dimension of the input.
empty_array = np.array([], dtype=int)
z1 = np.zeros(5)
i = argrelmin(z1)
assert_equal(len(i), 1)
assert_array_equal(i[0], empty_array)
z2 = np.zeros((3,5))
row, col = argrelmin(z2, axis=0)
assert_array_equal(row, empty_array)
assert_array_equal(col, empty_array)
row, col = argrelmin(z2, axis=1)
assert_array_equal(row, empty_array)
assert_array_equal(col, empty_array)
def test_basic(self):
# Note: the docstrings for the argrel{min,max,extrema} functions
# do not give a guarantee of the order of the indices, so we'll
# sort them before testing.
x = np.array([[1, 2, 2, 3, 2],
[2, 1, 2, 2, 3],
[3, 2, 1, 2, 2],
[2, 3, 2, 1, 2],
[1, 2, 3, 2, 1]])
row, col = argrelmax(x, axis=0)
order = np.argsort(row)
assert_equal(row[order], [1, 2, 3])
assert_equal(col[order], [4, 0, 1])
row, col = argrelmax(x, axis=1)
order = np.argsort(row)
assert_equal(row[order], [0, 3, 4])
assert_equal(col[order], [3, 1, 2])
row, col = argrelmin(x, axis=0)
order = np.argsort(row)
assert_equal(row[order], [1, 2, 3])
assert_equal(col[order], [1, 2, 3])
row, col = argrelmin(x, axis=1)
order = np.argsort(row)
assert_equal(row[order], [1, 2, 3])
assert_equal(col[order], [1, 2, 3])
def test_highorder(self):
order = 2
sigmas = [1.0, 2.0, 10.0, 5.0, 15.0]
test_data, act_locs = _gen_gaussians_even(sigmas, 500)
test_data[act_locs + order] = test_data[act_locs]*0.99999
test_data[act_locs - order] = test_data[act_locs]*0.99999
rel_max_locs = argrelmax(test_data, order=order, mode='clip')[0]
assert_(len(rel_max_locs) == len(act_locs))
assert_((rel_max_locs == act_locs).all())
def test_2d_gaussians(self):
sigmas = [1.0, 2.0, 10.0]
test_data, act_locs = _gen_gaussians_even(sigmas, 100)
rot_factor = 20
rot_range = np.arange(0, len(test_data)) - rot_factor
test_data_2 = np.vstack([test_data, test_data[rot_range]])
rel_max_rows, rel_max_cols = argrelmax(test_data_2, axis=1, order=1)
for rw in xrange(0, test_data_2.shape[0]):
inds = (rel_max_rows == rw)
assert_(len(rel_max_cols[inds]) == len(act_locs))
assert_((act_locs == (rel_max_cols[inds] - rot_factor*rw)).all())
class TestPeakProminences(object):
def test_empty(self):
"""
Test if an empty array is returned if no peaks are provided.
"""
out = peak_prominences([1, 2, 3], [])
for arr, dtype in zip(out, [np.float64, np.intp, np.intp]):
assert_(arr.size == 0)
assert_(arr.dtype == dtype)
out = peak_prominences([], [])
for arr, dtype in zip(out, [np.float64, np.intp, np.intp]):
assert_(arr.size == 0)
assert_(arr.dtype == dtype)
def test_basic(self):
"""
Test if height of prominences is correctly calculated in signal with
rising baseline (peak widths are 1 sample).
"""
# Prepare basic signal
x = np.array([-1, 1.2, 1.2, 1, 3.2, 1.3, 2.88, 2.1])
peaks = np.array([1, 2, 4, 6])
lbases = np.array([0, 0, 0, 5])
rbases = np.array([3, 3, 5, 7])
proms = x[peaks] - np.max([x[lbases], x[rbases]], axis=0)
# Test if calculation matches handcrafted result
out = peak_prominences(x, peaks)
assert_equal(out[0], proms)
assert_equal(out[1], lbases)
assert_equal(out[2], rbases)
def test_edge_cases(self):
"""
Test edge cases.
"""
# Peaks have same height, prominence and bases
x = [0, 2, 1, 2, 1, 2, 0]
peaks = [1, 3, 5]
proms, lbases, rbases = peak_prominences(x, peaks)
assert_equal(proms, [2, 2, 2])
assert_equal(lbases, [0, 0, 0])
assert_equal(rbases, [6, 6, 6])
# Peaks have same height & prominence but different bases
x = [0, 1, 0, 1, 0, 1, 0]
peaks = np.array([1, 3, 5])
proms, lbases, rbases = peak_prominences(x, peaks)
assert_equal(proms, [1, 1, 1])
assert_equal(lbases, peaks - 1)
assert_equal(rbases, peaks + 1)
def test_non_contiguous(self):
"""
Test with non-C-contiguous input arrays.
"""
x = np.repeat([-9, 9, 9, 0, 3, 1], 2)
peaks = np.repeat([1, 2, 4], 2)
proms, lbases, rbases = peak_prominences(x[::2], peaks[::2])
assert_equal(proms, [9, 9, 2])
assert_equal(lbases, [0, 0, 3])
assert_equal(rbases, [3, 3, 5])
def test_wlen(self):
"""
Test if wlen actually shrinks the evaluation range correctly.
"""
x = [0, 1, 2, 3, 1, 0, -1]
peak = [3]
# Test rounding behavior of wlen
assert_equal(peak_prominences(x, peak), [3., 0, 6])
for wlen, i in [(8, 0), (7, 0), (6, 0), (5, 1), (3.2, 1), (3, 2), (1.1, 2)]:
assert_equal(peak_prominences(x, peak, wlen), [3. - i, 0 + i, 6 - i])
def test_raises(self):
"""
Verfiy that argument validation works as intended.
"""
# x with dimension > 1
with raises(ValueError, match='dimension'):
peak_prominences([[0, 1, 1, 0]], [1, 2])
# peaks with dimension > 1
with raises(ValueError, match='dimension'):
peak_prominences([0, 1, 1, 0], [[1, 2]])
# x with dimension < 1
with raises(ValueError, match='dimension'):
peak_prominences(3, [0,])
# empty x with peaks supplied
with raises(ValueError, match='not a valid peak'):
peak_prominences([], [1, 2])
# invalid peaks
for p in [-1, 0, 1, 2, 3]:
with raises(ValueError, match=str(p) + ' is not a valid peak'):
peak_prominences([1, 0, 2], [p,])
# peaks is not cast-able to np.intp
with raises(TypeError, match='Cannot safely cast'):
peak_prominences([0, 1, 1, 0], [1.1, 2.3])
# wlen < 3
with raises(ValueError, match='wlen'):
peak_prominences(np.arange(10), [3, 5], wlen=1)
class TestPeakWidths(object):
def test_empty(self):
"""
Test if an empty array is returned if no peaks are provided.
"""
widths = peak_widths([], [])[0]
assert_(isinstance(widths, np.ndarray))
assert_equal(widths.size, 0)
widths = peak_widths([1, 2, 3], [])[0]
assert_(isinstance(widths, np.ndarray))
assert_equal(widths.size, 0)
out = peak_widths([], [])
for arr in out:
assert_(isinstance(arr, np.ndarray))
assert_equal(arr.size, 0)
def test_basic(self):
"""
Test a simple use case with easy to verify results at different relative
heights.
"""
x = np.array([1, 0, 1, 2, 1, 0, -1])
prominence = 2
for rel_height, width_true, lip_true, rip_true in [
(0., 0., 3., 3.),
(0.25, 1., 2.5, 3.5),
(0.5, 2., 2., 4.),
(0.75, 3., 1.5, 4.5),
(1., 4., 1., 5.),
(2., 5., 1., 6.),
(3., 5., 1., 6.)
]:
width_calc, height, lip_calc, rip_calc = peak_widths(
x, [3], rel_height)
assert_allclose(width_calc, width_true)
assert_allclose(height, 2 - rel_height * prominence)
assert_allclose(lip_calc, lip_true)
assert_allclose(rip_calc, rip_true)
def test_non_contiguous(self):
"""
Test with non-C-contiguous input arrays.
"""
x = np.repeat([0, 100, 50], 4)
peaks = np.repeat([1], 3)
result = peak_widths(x[::4], peaks[::3])
assert_equal(result, [0.75, 75, 0.75, 1.5])
def test_exceptions(self):
"""
Verfiy that argument validation works as intended.
"""
with raises(ValueError, match='dimension'):
# x with dimension > 1
peak_widths(np.zeros((3, 4)), np.ones(3))
with raises(ValueError, match='dimension'):
# x with dimension < 1
peak_widths(3, [0])
with raises(ValueError, match='dimension'):
# peaks with dimension > 1
peak_widths(np.arange(10), np.ones((3, 2), dtype=np.intp))
with raises(ValueError, match='dimension'):
# peaks with dimension < 1
peak_widths(np.arange(10), 3)
with raises(ValueError, match='not a valid peak'):
# peak pos exceeds x.size
peak_widths(np.arange(10), [8, 11])
with raises(ValueError, match='not a valid peak'):
# empty x with peaks supplied
peak_widths([], [1, 2])
with raises(TypeError, match='Cannot safely cast'):
# peak cannot be safely casted to intp
peak_widths(np.arange(10), [1.1, 2.3])
with raises(ValueError, match='rel_height'):
# rel_height is < 0
peak_widths(np.arange(10), [1, 2], rel_height=-1)
with raises(TypeError, match='None'):
# prominence data contains None
peak_widths([1, 2, 1], [1], prominence_data=(None, None, None))
def test_mismatching_prominence_data(self):
"""Test with mismatching peak and / or prominence data."""
x = [0, 1, 0]
peak = [1]
for i, (peaks, left_bases, right_bases) in enumerate([
((1.,), (-1,), (2,)), # left base not in x
((1.,), (0,), (3,)), # right base not in x
((1.,), (1,), (2,)), # left base same as peak
((1.,), (0,), (1,)), # right base same as peak
((1., 1.), (0, 0), (2, 2)), # array shapes don't match peaks
((1., 1.), (0,), (2,)), # arrays with different shapes
((1.,), (0, 0), (2,)), # arrays with different shapes
((1.,), (0,), (2, 2)) # arrays with different shapes
]):
# Make sure input is matches output of signal.prominences
prominence_data = (np.array(peaks, dtype=np.float64),
np.array(left_bases, dtype=np.intp),
np.array(right_bases, dtype=np.intp))
# Test for correct exception
if i < 4:
match = "prominence data is invalid for peak"
else:
match = "arrays in `prominence_data` must have the same shape"
with raises(ValueError, match=match):
peak_widths(x, peak, prominence_data=prominence_data)
def test_intersection_rules(self):
"""Test if x == eval_height counts as an intersection."""
# Flatt peak with two possible intersection points if evaluated at 1
x = [0, 1, 2, 1, 3, 3, 3, 1, 2, 1, 0]
# relative height is 0 -> width is 0 as well
assert_allclose(peak_widths(x, peaks=[5], rel_height=0),
[(0.,), (3.,), (5.,), (5.,)])
# width_height == x counts as intersection -> nearest 1 is chosen
assert_allclose(peak_widths(x, peaks=[5], rel_height=2/3),
[(4.,), (1.,), (3.,), (7.,)])
def test_unpack_condition_args():
"""
Verify parsing of condition arguments for `scipy.signal.find_peaks` function.
"""
x = np.arange(10)
amin_true = x
amax_true = amin_true + 10
peaks = amin_true[1::2]
# Test unpacking with None or interval
assert_((None, None) == _unpack_condition_args((None, None), x, peaks))
assert_((1, None) == _unpack_condition_args(1, x, peaks))
assert_((1, None) == _unpack_condition_args((1, None), x, peaks))
assert_((None, 2) == _unpack_condition_args((None, 2), x, peaks))
assert_((3., 4.5) == _unpack_condition_args((3., 4.5), x, peaks))
# Test if borders are correctly reduced with `peaks`
amin_calc, amax_calc = _unpack_condition_args((amin_true, amax_true), x, peaks)
assert_equal(amin_calc, amin_true[peaks])
assert_equal(amax_calc, amax_true[peaks])
# Test raises if array borders don't match x
with raises(ValueError, match="array size of lower"):
_unpack_condition_args(amin_true, np.arange(11), peaks)
with raises(ValueError, match="array size of upper"):
_unpack_condition_args((None, amin_true), np.arange(11), peaks)
class TestFindPeaks(object):
# Keys of optionally returned properties
property_keys = {'peak_heights', 'left_thresholds', 'right_thresholds',
'prominences', 'left_bases', 'right_bases', 'widths',
'width_heights', 'left_ips', 'right_ips'}
def test_constant(self):
"""
Test behavior for signal without local maxima.
"""
open_interval = (None, None)
peaks, props = find_peaks(np.ones(10),
height=open_interval, threshold=open_interval,
prominence=open_interval, width=open_interval)
assert_(peaks.size == 0)
for key in self.property_keys:
assert_(props[key].size == 0)
def test_height_condition(self):
"""
Test height condition for peaks.
"""
x = (0., 1/3, 0., 2.5, 0, 4., 0)
peaks, props = find_peaks(x, height=(None, None))
assert_equal(peaks, np.array([1, 3, 5]))
assert_equal(props['peak_heights'], np.array([1/3, 2.5, 4.]))
assert_equal(find_peaks(x, height=0.5)[0], np.array([3, 5]))
assert_equal(find_peaks(x, height=(None, 3))[0], np.array([1, 3]))
assert_equal(find_peaks(x, height=(2, 3))[0], np.array([3]))
def test_threshold_condition(self):
"""
Test threshold condition for peaks.
"""
x = (0, 2, 1, 4, -1)
peaks, props = find_peaks(x, threshold=(None, None))
assert_equal(peaks, np.array([1, 3]))
assert_equal(props['left_thresholds'], np.array([2, 3]))
assert_equal(props['right_thresholds'], np.array([1, 5]))
assert_equal(find_peaks(x, threshold=2)[0], np.array([3]))
assert_equal(find_peaks(x, threshold=3.5)[0], np.array([]))
assert_equal(find_peaks(x, threshold=(None, 5))[0], np.array([1, 3]))
assert_equal(find_peaks(x, threshold=(None, 4))[0], np.array([1]))
assert_equal(find_peaks(x, threshold=(2, 4))[0], np.array([]))
def test_distance_condition(self):
"""
Test distance condition for peaks.
"""
# Peaks of different height with constant distance 3
peaks_all = np.arange(1, 21, 3)
x = np.zeros(21)
x[peaks_all] += np.linspace(1, 2, peaks_all.size)
# Test if peaks with "minimal" distance are still selected (distance = 3)
assert_equal(find_peaks(x, distance=3)[0], peaks_all)
# Select every second peak (distance > 3)
peaks_subset = find_peaks(x, distance=3.0001)[0]
# Test if peaks_subset is subset of peaks_all
assert_(
np.setdiff1d(peaks_subset, peaks_all, assume_unique=True).size == 0
)
# Test if every second peak was removed
assert_equal(np.diff(peaks_subset), 6)
# Test priority of peak removal
x = [-2, 1, -1, 0, -3]
peaks_subset = find_peaks(x, distance=10)[0] # use distance > x size
assert_(peaks_subset.size == 1 and peaks_subset[0] == 1)
def test_prominence_condition(self):
"""
Test prominence condition for peaks.
"""
x = np.linspace(0, 10, 100)
peaks_true = np.arange(1, 99, 2)
offset = np.linspace(1, 10, peaks_true.size)
x[peaks_true] += offset
prominences = x[peaks_true] - x[peaks_true + 1]
interval = (3, 9)
keep = np.where(
(interval[0] <= prominences) & (prominences <= interval[1]))
peaks_calc, properties = find_peaks(x, prominence=interval)
assert_equal(peaks_calc, peaks_true[keep])
assert_equal(properties['prominences'], prominences[keep])
assert_equal(properties['left_bases'], 0)
assert_equal(properties['right_bases'], peaks_true[keep] + 1)
def test_width_condition(self):
"""
Test width condition for peaks.
"""
x = np.array([1, 0, 1, 2, 1, 0, -1, 4, 0])
peaks, props = find_peaks(x, width=(None, 2), rel_height=0.75)
assert_equal(peaks.size, 1)
assert_equal(peaks, 7)
assert_allclose(props['widths'], 1.35)
assert_allclose(props['width_heights'], 1.)
assert_allclose(props['left_ips'], 6.4)
assert_allclose(props['right_ips'], 7.75)
def test_properties(self):
"""
Test returned properties.
"""
open_interval = (None, None)
x = [0, 1, 0, 2, 1.5, 0, 3, 0, 5, 9]
peaks, props = find_peaks(x,
height=open_interval, threshold=open_interval,
prominence=open_interval, width=open_interval)
assert_(len(props) == len(self.property_keys))
for key in self.property_keys:
assert_(peaks.size == props[key].size)
def test_raises(self):
"""
Test exceptions raised by function.
"""
with raises(ValueError, match="dimension"):
find_peaks(np.array(1))
with raises(ValueError, match="dimension"):
find_peaks(np.ones((2, 2)))
with raises(ValueError, match="distance"):
find_peaks(np.arange(10), distance=-1)
class TestFindPeaksCwt(object):
def test_find_peaks_exact(self):
"""
Generate a series of gaussians and attempt to find the peak locations.
"""
sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
num_points = 500
test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
widths = np.arange(0.1, max(sigmas))
found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=0,
min_length=None)
np.testing.assert_array_equal(found_locs, act_locs,
"Found maximum locations did not equal those expected")
def test_find_peaks_withnoise(self):
"""
Verify that peak locations are (approximately) found
for a series of gaussians with added noise.
"""
sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
num_points = 500
test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
widths = np.arange(0.1, max(sigmas))
noise_amp = 0.07
np.random.seed(18181911)
test_data += (np.random.rand(num_points) - 0.5)*(2*noise_amp)
found_locs = find_peaks_cwt(test_data, widths, min_length=15,
gap_thresh=1, min_snr=noise_amp / 5)
np.testing.assert_equal(len(found_locs), len(act_locs), 'Different number' +
'of peaks found than expected')
diffs = np.abs(found_locs - act_locs)
max_diffs = np.array(sigmas) / 5
np.testing.assert_array_less(diffs, max_diffs, 'Maximum location differed' +
'by more than %s' % (max_diffs))
def test_find_peaks_nopeak(self):
"""
Verify that no peak is found in
data that's just noise.
"""
noise_amp = 1.0
num_points = 100
np.random.seed(181819141)
test_data = (np.random.rand(num_points) - 0.5)*(2*noise_amp)
widths = np.arange(10, 50)
found_locs = find_peaks_cwt(test_data, widths, min_snr=5, noise_perc=30)
np.testing.assert_equal(len(found_locs), 0)
|