1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
"""
=====================================
Sparse matrices (:mod:`scipy.sparse`)
=====================================
.. currentmodule:: scipy.sparse
SciPy 2-D sparse matrix package for numeric data.
Contents
========
Sparse matrix classes
---------------------
.. autosummary::
:toctree: generated/
bsr_matrix - Block Sparse Row matrix
coo_matrix - A sparse matrix in COOrdinate format
csc_matrix - Compressed Sparse Column matrix
csr_matrix - Compressed Sparse Row matrix
dia_matrix - Sparse matrix with DIAgonal storage
dok_matrix - Dictionary Of Keys based sparse matrix
lil_matrix - Row-based linked list sparse matrix
spmatrix - Sparse matrix base class
Functions
---------
Building sparse matrices:
.. autosummary::
:toctree: generated/
eye - Sparse MxN matrix whose k-th diagonal is all ones
identity - Identity matrix in sparse format
kron - kronecker product of two sparse matrices
kronsum - kronecker sum of sparse matrices
diags - Return a sparse matrix from diagonals
spdiags - Return a sparse matrix from diagonals
block_diag - Build a block diagonal sparse matrix
tril - Lower triangular portion of a matrix in sparse format
triu - Upper triangular portion of a matrix in sparse format
bmat - Build a sparse matrix from sparse sub-blocks
hstack - Stack sparse matrices horizontally (column wise)
vstack - Stack sparse matrices vertically (row wise)
rand - Random values in a given shape
random - Random values in a given shape
Save and load sparse matrices:
.. autosummary::
:toctree: generated/
save_npz - Save a sparse matrix to a file using ``.npz`` format.
load_npz - Load a sparse matrix from a file using ``.npz`` format.
Sparse matrix tools:
.. autosummary::
:toctree: generated/
find
Identifying sparse matrices:
.. autosummary::
:toctree: generated/
issparse
isspmatrix
isspmatrix_csc
isspmatrix_csr
isspmatrix_bsr
isspmatrix_lil
isspmatrix_dok
isspmatrix_coo
isspmatrix_dia
Submodules
----------
.. autosummary::
:toctree: generated/
csgraph - Compressed sparse graph routines
linalg - sparse linear algebra routines
Exceptions
----------
.. autosummary::
:toctree: generated/
SparseEfficiencyWarning
SparseWarning
Usage information
=================
There are seven available sparse matrix types:
1. csc_matrix: Compressed Sparse Column format
2. csr_matrix: Compressed Sparse Row format
3. bsr_matrix: Block Sparse Row format
4. lil_matrix: List of Lists format
5. dok_matrix: Dictionary of Keys format
6. coo_matrix: COOrdinate format (aka IJV, triplet format)
7. dia_matrix: DIAgonal format
To construct a matrix efficiently, use either dok_matrix or lil_matrix.
The lil_matrix class supports basic slicing and fancy indexing with a
similar syntax to NumPy arrays. As illustrated below, the COO format
may also be used to efficiently construct matrices. Despite their
similarity to NumPy arrays, it is **strongly discouraged** to use NumPy
functions directly on these matrices because NumPy may not properly convert
them for computations, leading to unexpected (and incorrect) results. If you
do want to apply a NumPy function to these matrices, first check if SciPy has
its own implementation for the given sparse matrix class, or **convert the
sparse matrix to a NumPy array** (e.g. using the `toarray()` method of the
class) first before applying the method.
To perform manipulations such as multiplication or inversion, first
convert the matrix to either CSC or CSR format. The lil_matrix format is
row-based, so conversion to CSR is efficient, whereas conversion to CSC
is less so.
All conversions among the CSR, CSC, and COO formats are efficient,
linear-time operations.
Matrix vector product
---------------------
To do a vector product between a sparse matrix and a vector simply use
the matrix `dot` method, as described in its docstring:
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
.. warning:: As of NumPy 1.7, `np.dot` is not aware of sparse matrices,
therefore using it will result on unexpected results or errors.
The corresponding dense array should be obtained first instead:
>>> np.dot(A.toarray(), v)
array([ 1, -3, -1], dtype=int64)
but then all the performance advantages would be lost.
The CSR format is specially suitable for fast matrix vector products.
Example 1
---------
Construct a 1000x1000 lil_matrix and add some values to it:
>>> from scipy.sparse import lil_matrix
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand
>>> A = lil_matrix((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))
Now convert it to CSR format and solve A x = b for x:
>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)
Convert it to a dense matrix and solve, and check that the result
is the same:
>>> x_ = solve(A.toarray(), b)
Now we can compute norm of the error with:
>>> err = norm(x-x_)
>>> err < 1e-10
True
It should be small :)
Example 2
---------
Construct a matrix in COO format:
>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))
Notice that the indices do not need to be sorted.
Duplicate (i,j) entries are summed when converting to CSR or CSC.
>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()
This is useful for constructing finite-element stiffness and mass matrices.
Further Details
---------------
CSR column indices are not necessarily sorted. Likewise for CSC row
indices. Use the .sorted_indices() and .sort_indices() methods when
sorted indices are required (e.g. when passing data to other libraries).
"""
from __future__ import division, print_function, absolute_import
# Original code by Travis Oliphant.
# Modified and extended by Ed Schofield, Robert Cimrman,
# Nathan Bell, and Jake Vanderplas.
from .base import *
from .csr import *
from .csc import *
from .lil import *
from .dok import *
from .coo import *
from .dia import *
from .bsr import *
from .construct import *
from .extract import *
from ._matrix_io import *
# For backward compatibility with v0.19.
from . import csgraph
__all__ = [s for s in dir() if not s.startswith('_')]
from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester
|