File: __init__.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (247 lines) | stat: -rw-r--r-- 6,735 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
=====================================
Sparse matrices (:mod:`scipy.sparse`)
=====================================

.. currentmodule:: scipy.sparse

SciPy 2-D sparse matrix package for numeric data.

Contents
========

Sparse matrix classes
---------------------

.. autosummary::
   :toctree: generated/

   bsr_matrix - Block Sparse Row matrix
   coo_matrix - A sparse matrix in COOrdinate format
   csc_matrix - Compressed Sparse Column matrix
   csr_matrix - Compressed Sparse Row matrix
   dia_matrix - Sparse matrix with DIAgonal storage
   dok_matrix - Dictionary Of Keys based sparse matrix
   lil_matrix - Row-based linked list sparse matrix
   spmatrix - Sparse matrix base class

Functions
---------

Building sparse matrices:

.. autosummary::
   :toctree: generated/

   eye - Sparse MxN matrix whose k-th diagonal is all ones
   identity - Identity matrix in sparse format
   kron - kronecker product of two sparse matrices
   kronsum - kronecker sum of sparse matrices
   diags - Return a sparse matrix from diagonals
   spdiags - Return a sparse matrix from diagonals
   block_diag - Build a block diagonal sparse matrix
   tril - Lower triangular portion of a matrix in sparse format
   triu - Upper triangular portion of a matrix in sparse format
   bmat - Build a sparse matrix from sparse sub-blocks
   hstack - Stack sparse matrices horizontally (column wise)
   vstack - Stack sparse matrices vertically (row wise)
   rand - Random values in a given shape
   random - Random values in a given shape

Save and load sparse matrices:

.. autosummary::
   :toctree: generated/

   save_npz - Save a sparse matrix to a file using ``.npz`` format.
   load_npz - Load a sparse matrix from a file using ``.npz`` format.

Sparse matrix tools:

.. autosummary::
   :toctree: generated/

   find

Identifying sparse matrices:

.. autosummary::
   :toctree: generated/

   issparse
   isspmatrix
   isspmatrix_csc
   isspmatrix_csr
   isspmatrix_bsr
   isspmatrix_lil
   isspmatrix_dok
   isspmatrix_coo
   isspmatrix_dia

Submodules
----------

.. autosummary::
   :toctree: generated/

   csgraph - Compressed sparse graph routines
   linalg - sparse linear algebra routines

Exceptions
----------

.. autosummary::
   :toctree: generated/

   SparseEfficiencyWarning
   SparseWarning


Usage information
=================

There are seven available sparse matrix types:

    1. csc_matrix: Compressed Sparse Column format
    2. csr_matrix: Compressed Sparse Row format
    3. bsr_matrix: Block Sparse Row format
    4. lil_matrix: List of Lists format
    5. dok_matrix: Dictionary of Keys format
    6. coo_matrix: COOrdinate format (aka IJV, triplet format)
    7. dia_matrix: DIAgonal format

To construct a matrix efficiently, use either dok_matrix or lil_matrix.
The lil_matrix class supports basic slicing and fancy indexing with a
similar syntax to NumPy arrays. As illustrated below, the COO format
may also be used to efficiently construct matrices. Despite their
similarity to NumPy arrays, it is **strongly discouraged** to use NumPy
functions directly on these matrices because NumPy may not properly convert
them for computations, leading to unexpected (and incorrect) results. If you
do want to apply a NumPy function to these matrices, first check if SciPy has
its own implementation for the given sparse matrix class, or **convert the
sparse matrix to a NumPy array** (e.g. using the `toarray()` method of the
class) first before applying the method.

To perform manipulations such as multiplication or inversion, first
convert the matrix to either CSC or CSR format. The lil_matrix format is
row-based, so conversion to CSR is efficient, whereas conversion to CSC
is less so.

All conversions among the CSR, CSC, and COO formats are efficient,
linear-time operations.

Matrix vector product
---------------------
To do a vector product between a sparse matrix and a vector simply use
the matrix `dot` method, as described in its docstring:

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

.. warning:: As of NumPy 1.7, `np.dot` is not aware of sparse matrices,
  therefore using it will result on unexpected results or errors.
  The corresponding dense array should be obtained first instead:

  >>> np.dot(A.toarray(), v)
  array([ 1, -3, -1], dtype=int64)

  but then all the performance advantages would be lost.

The CSR format is specially suitable for fast matrix vector products.

Example 1
---------
Construct a 1000x1000 lil_matrix and add some values to it:

>>> from scipy.sparse import lil_matrix
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand

>>> A = lil_matrix((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))

Now convert it to CSR format and solve A x = b for x:

>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)

Convert it to a dense matrix and solve, and check that the result
is the same:

>>> x_ = solve(A.toarray(), b)

Now we can compute norm of the error with:

>>> err = norm(x-x_)
>>> err < 1e-10
True

It should be small :)


Example 2
---------

Construct a matrix in COO format:

>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))

Notice that the indices do not need to be sorted.

Duplicate (i,j) entries are summed when converting to CSR or CSC.

>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()

This is useful for constructing finite-element stiffness and mass matrices.

Further Details
---------------

CSR column indices are not necessarily sorted.  Likewise for CSC row
indices.  Use the .sorted_indices() and .sort_indices() methods when
sorted indices are required (e.g. when passing data to other libraries).

"""

from __future__ import division, print_function, absolute_import

# Original code by Travis Oliphant.
# Modified and extended by Ed Schofield, Robert Cimrman,
# Nathan Bell, and Jake Vanderplas.

from .base import *
from .csr import *
from .csc import *
from .lil import *
from .dok import *
from .coo import *
from .dia import *
from .bsr import *
from .construct import *
from .extract import *
from ._matrix_io import *

# For backward compatibility with v0.19.
from . import csgraph

__all__ = [s for s in dir() if not s.startswith('_')]

from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester