1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
# Author: Paul Nation -- <nonhermitian@gmail.com>
# Original Source: QuTiP: Quantum Toolbox in Python (qutip.org)
# License: New BSD, (C) 2014
from __future__ import absolute_import
import numpy as np
cimport numpy as np
from warnings import warn
from scipy.sparse import (csc_matrix, isspmatrix, isspmatrix_coo,
isspmatrix_csc, isspmatrix_csr,
SparseEfficiencyWarning)
include 'parameters.pxi'
def reverse_cuthill_mckee(graph, symmetric_mode=False):
"""
reverse_cuthill_mckee(graph, symmetric_mode=False)
Returns the permutation array that orders a sparse CSR or CSC matrix
in Reverse-Cuthill McKee ordering.
It is assumed by default, ``symmetric_mode=False``, that the input matrix
is not symmetric and works on the matrix ``A+A.T``. If you are
guaranteed that the matrix is symmetric in structure (values of matrix
elements do not matter) then set ``symmetric_mode=True``.
Parameters
----------
graph : sparse matrix
Input sparse in CSC or CSR sparse matrix format.
symmetric_mode : bool, optional
Is input matrix guaranteed to be symmetric.
Returns
-------
perm : ndarray
Array of permuted row and column indices.
Notes
-----
.. versionadded:: 0.15.0
References
----------
E. Cuthill and J. McKee, "Reducing the Bandwidth of Sparse Symmetric Matrices",
ACM '69 Proceedings of the 1969 24th national conference, (1969).
"""
if not (isspmatrix_csc(graph) or isspmatrix_csr(graph)):
raise TypeError('Input must be in CSC or CSR sparse matrix format.')
nrows = graph.shape[0]
if not symmetric_mode:
graph = graph+graph.transpose()
return _reverse_cuthill_mckee(graph.indices, graph.indptr, nrows)
def maximum_bipartite_matching(graph, perm_type='row'):
"""
maximum_bipartite_matching(graph, perm_type='row')
Returns an array of row or column permutations that makes
the diagonal of a nonsingular square CSC sparse matrix zero free.
Such a permutation is always possible provided that the matrix
is nonsingular. This function looks at the structure of the matrix
only. The input matrix will be converted to CSC matrix format if
necessary.
Parameters
----------
graph : sparse matrix
Input sparse in CSC format
perm_type : str, {'row', 'column'}
Type of permutation to generate.
Returns
-------
perm : ndarray
Array of row or column permutations.
Notes
-----
This function relies on a maximum cardinality bipartite matching
algorithm based on a breadth-first search (BFS) of the underlying
graph.
.. versionadded:: 0.15.0
References
----------
I. S. Duff, K. Kaya, and B. Ucar, "Design, Implementation, and
Analysis of Maximum Transversal Algorithms", ACM Trans. Math. Softw.
38, no. 2, (2011).
"""
cdef np.npy_intp nrows = graph.shape[0]
if nrows != graph.shape[1]:
raise ValueError('Maximum bipartite matching requires a square matrix.')
if isspmatrix_csr(graph) or isspmatrix_coo(graph):
graph = graph.tocsc()
elif not isspmatrix_csc(graph):
raise TypeError("graph must be in CSC, CSR, or COO format.")
if perm_type == 'column':
graph = graph.transpose().tocsc()
perm = _maximum_bipartite_matching(graph.indices, graph.indptr, nrows)
if np.any(perm==-1):
raise Exception('Possibly singular input matrix.')
return perm
cdef _node_degrees(
np.ndarray[int32_or_int64, ndim=1, mode="c"] ind,
np.ndarray[int32_or_int64, ndim=1, mode="c"] ptr,
np.npy_intp num_rows):
"""
Find the degree of each node (matrix row) in a graph represented
by a sparse CSR or CSC matrix.
"""
cdef np.npy_intp ii, jj
cdef np.ndarray[int32_or_int64] degree = np.zeros(num_rows, dtype=ind.dtype)
for ii in range(num_rows):
degree[ii] = ptr[ii + 1] - ptr[ii]
for jj in range(ptr[ii], ptr[ii + 1]):
if ind[jj] == ii:
# add one if the diagonal is in row ii
degree[ii] += 1
break
return degree
def _reverse_cuthill_mckee(np.ndarray[int32_or_int64, ndim=1, mode="c"] ind,
np.ndarray[int32_or_int64, ndim=1, mode="c"] ptr,
np.npy_intp num_rows):
"""
Reverse Cuthill-McKee ordering of a sparse symmetric CSR or CSC matrix.
We follow the original Cuthill-McKee paper and always start the routine
at a node of lowest degree for each connected component.
"""
cdef np.npy_intp N = 0, N_old, level_start, level_end, temp
cdef np.npy_intp zz, ii, jj, kk, ll, level_len
cdef np.ndarray[int32_or_int64] order = np.zeros(num_rows, dtype=ind.dtype)
cdef np.ndarray[int32_or_int64] degree = _node_degrees(ind, ptr, num_rows)
cdef np.ndarray[np.npy_intp] inds = np.argsort(degree)
cdef np.ndarray[np.npy_intp] rev_inds = np.argsort(inds)
cdef np.ndarray[ITYPE_t] temp_degrees = np.zeros(np.max(degree), dtype=ITYPE)
cdef int32_or_int64 i, j, seed, temp2
# loop over zz takes into account possible disconnected graph.
for zz in range(num_rows):
if inds[zz] != -1: # Do BFS with seed=inds[zz]
seed = inds[zz]
order[N] = seed
N += 1
inds[rev_inds[seed]] = -1
level_start = N - 1
level_end = N
while level_start < level_end:
for ii in range(level_start, level_end):
i = order[ii]
N_old = N
# add unvisited neighbors
for jj in range(ptr[i], ptr[i + 1]):
# j is node number connected to i
j = ind[jj]
if inds[rev_inds[j]] != -1:
inds[rev_inds[j]] = -1
order[N] = j
N += 1
# Add values to temp_degrees array for insertion sort
level_len = 0
for kk in range(N_old, N):
temp_degrees[level_len] = degree[order[kk]]
level_len += 1
# Do insertion sort for nodes from lowest to highest degree
for kk in range(1,level_len):
temp = temp_degrees[kk]
temp2 = order[N_old+kk]
ll = kk
while (ll > 0) and (temp < temp_degrees[ll-1]):
temp_degrees[ll] = temp_degrees[ll-1]
order[N_old+ll] = order[N_old+ll-1]
ll -= 1
temp_degrees[ll] = temp
order[N_old+ll] = temp2
# set next level start and end ranges
level_start = level_end
level_end = N
if N == num_rows:
break
# return reversed order for RCM ordering
return order[::-1]
def _maximum_bipartite_matching(
np.ndarray[int32_or_int64, ndim=1, mode="c"] inds,
np.ndarray[int32_or_int64, ndim=1, mode="c"] ptrs,
np.npy_intp n):
"""
Maximum bipartite matching of a graph in CSC format.
"""
cdef np.ndarray[int32_or_int64] visited = np.zeros(n, dtype=inds.dtype)
cdef np.ndarray[ITYPE_t] queue = np.zeros(n, dtype=ITYPE)
cdef np.ndarray[ITYPE_t] previous = np.zeros(n, dtype=ITYPE)
cdef np.ndarray[int32_or_int64] match = np.empty(n, dtype=inds.dtype)
cdef np.ndarray[ITYPE_t] row_match = np.empty(n, dtype=ITYPE)
cdef np.npy_intp queue_ptr, queue_col, ptr, i, j, queue_size
cdef np.npy_intp col, next_num = 1
cdef int32_or_int64 row, temp, eptr
for i in range(n):
match[i] = -1
row_match[i] = -1
for i in range(n):
if match[i] == -1 and (ptrs[i] != ptrs[i + 1]):
queue[0] = i
queue_ptr = 0
queue_size = 1
while (queue_size > queue_ptr):
queue_col = queue[queue_ptr]
queue_ptr += 1
eptr = ptrs[queue_col + 1]
for ptr in range(ptrs[queue_col], eptr):
row = inds[ptr]
temp = visited[row]
if (temp != next_num and temp != -1):
previous[row] = queue_col
visited[row] = next_num
col = row_match[row]
if (col == -1):
while (row != -1):
col = previous[row]
temp = match[col]
match[col] = row
row_match[row] = col
row = temp
next_num += 1
queue_size = 0
break
else:
queue[queue_size] = col
queue_size += 1
if match[i] == -1:
for j in range(1, queue_size):
visited[match[queue[j]]] = -1
return match
def structural_rank(graph):
"""
structural_rank(graph)
Compute the structural rank of a graph (matrix) with a given
sparsity pattern.
The structural rank of a matrix is the number of entries in the maximum
transversal of the corresponding bipartite graph, and is an upper bound
on the numerical rank of the matrix. A graph has full structural rank
if it is possible to permute the elements to make the diagonal zero-free.
Parameters
----------
graph : sparse matrix
Input sparse matrix.
Returns
-------
rank : int
The structural rank of the sparse graph.
.. versionadded:: 0.19.0
References
----------
.. [1] I. S. Duff, "Computing the Structural Index", SIAM J. Alg. Disc.
Meth., Vol. 7, 594 (1986).
.. [2] http://www.cise.ufl.edu/research/sparse/matrices/legend.html
"""
if not isspmatrix:
raise TypeError('Input must be a sparse matrix')
if not isspmatrix_csc(graph):
if not (isspmatrix_csr(graph) or isspmatrix_coo(graph)):
warn('Input matrix should be in CSC, CSR, or COO matrix format',
SparseEfficiencyWarning)
graph = csc_matrix(graph)
# If A is a tall matrix, then transpose.
if graph.shape[0] > graph.shape[1]:
graph = graph.T.tocsc()
rank = np.sum(_maximum_bipartite_matching(graph.indices,
graph.indptr, graph.shape[1]) >= 0)
return rank
|