File: _shortest_path.pyx

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (1300 lines) | stat: -rw-r--r-- 48,252 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
"""
Routines for performing shortest-path graph searches

The main interface is in the function :func:`shortest_path`.  This
calls cython routines that compute the shortest path using
the Floyd-Warshall algorithm, Dijkstra's algorithm with Fibonacci Heaps,
the Bellman-Ford algorithm, or Johnson's Algorithm.
"""

# Author: Jake Vanderplas  -- <vanderplas@astro.washington.edu>
# License: BSD, (C) 2011
from __future__ import absolute_import

import warnings

import numpy as np
cimport numpy as np

from scipy.sparse import csr_matrix, isspmatrix, isspmatrix_csr, isspmatrix_csc
from scipy.sparse.csgraph._validation import validate_graph

cimport cython

from libc.stdlib cimport malloc, free
from numpy.math cimport INFINITY

include 'parameters.pxi'


class NegativeCycleError(Exception):
    def __init__(self, message=''):
        Exception.__init__(self, message)


def shortest_path(csgraph, method='auto',
                  directed=True,
                  return_predecessors=False,
                  unweighted=False,
                  overwrite=False,
                  indices=None):
    """
    shortest_path(csgraph, method='auto', directed=True, return_predecessors=False,
                  unweighted=False, overwrite=False, indices=None)

    Perform a shortest-path graph search on a positive directed or
    undirected graph.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array, matrix, or sparse matrix, 2 dimensions
        The N x N array of distances representing the input graph.
    method : string ['auto'|'FW'|'D'], optional
        Algorithm to use for shortest paths.  Options are:

           'auto' -- (default) select the best among 'FW', 'D', 'BF', or 'J'
                     based on the input data.

           'FW'   -- Floyd-Warshall algorithm.  Computational cost is
                     approximately ``O[N^3]``.  The input csgraph will be
                     converted to a dense representation.

           'D'    -- Dijkstra's algorithm with Fibonacci heaps.  Computational
                     cost is approximately ``O[N(N*k + N*log(N))]``, where
		     ``k`` is the average number of connected edges per node.
		     The input csgraph will be converted to a csr
		     representation.

           'BF'   -- Bellman-Ford algorithm.  This algorithm can be used when
                     weights are negative.  If a negative cycle is encountered,
                     an error will be raised.  Computational cost is
                     approximately ``O[N(N^2 k)]``, where ``k`` is the average
                     number of connected edges per node. The input csgraph will
                     be converted to a csr representation.

           'J'    -- Johnson's algorithm.  Like the Bellman-Ford algorithm,
                     Johnson's algorithm is designed for use when the weights
                     are negative.  It combines the Bellman-Ford algorithm
                     with Dijkstra's algorithm for faster computation.

    directed : bool, optional
        If True (default), then find the shortest path on a directed graph:
        only move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i]
    return_predecessors : bool, optional
        If True, return the size (N, N) predecesor matrix
    unweighted : bool, optional
        If True, then find unweighted distances.  That is, rather than finding
        the path between each point such that the sum of weights is minimized,
        find the path such that the number of edges is minimized.
    overwrite : bool, optional
        If True, overwrite csgraph with the result.  This applies only if
        method == 'FW' and csgraph is a dense, c-ordered array with
        dtype=float64.
    indices : array_like or int, optional
        If specified, only compute the paths for the points at the given
        indices. Incompatible with method == 'FW'.

    Returns
    -------
    dist_matrix : ndarray
        The N x N matrix of distances between graph nodes. dist_matrix[i,j]
        gives the shortest distance from point i to point j along the graph.

    predecessors : ndarray
        Returned only if return_predecessors == True.
        The N x N matrix of predecessors, which can be used to reconstruct
        the shortest paths.  Row i of the predecessor matrix contains
        information on the shortest paths from point i: each entry
        predecessors[i, j] gives the index of the previous node in the
        path from point i to point j.  If no path exists between point
        i and j, then predecessors[i, j] = -9999

    Raises
    ------
    NegativeCycleError:
        if there are negative cycles in the graph

    Notes
    -----
    As currently implemented, Dijkstra's algorithm and Johnson's algorithm
    do not work for graphs with direction-dependent distances when
    directed == False.  i.e., if csgraph[i,j] and csgraph[j,i] are non-equal
    edges, method='D' may yield an incorrect result.
    """
    # validate here to catch errors early but don't store the result;
    # we'll validate again later
    validate_graph(csgraph, directed, DTYPE,
                   copy_if_dense=(not overwrite),
                   copy_if_sparse=(not overwrite))

    cdef bint issparse
    cdef ssize_t N      # XXX cdef ssize_t Nk fails in Python 3 (?)

    if method == 'auto':
        # guess fastest method based on number of nodes and edges
        N = csgraph.shape[0]
        issparse = isspmatrix(csgraph)
        if issparse:
            Nk = csgraph.nnz
        else:
            Nk = np.sum(csgraph > 0)

        if indices is not None or Nk < N * N / 4:
            if ((issparse and np.any(csgraph.data < 0))
                      or (not issparse and np.any(csgraph < 0))):
                method = 'J'
            else:
                method = 'D'
        else:
            method = 'FW'

    if method == 'FW':
        if indices is not None:
            raise ValueError("Cannot specify indices with method == 'FW'.")
        return floyd_warshall(csgraph, directed,
                              return_predecessors=return_predecessors,
                              unweighted=unweighted,
                              overwrite=overwrite)

    elif method == 'D':
        return dijkstra(csgraph, directed,
                        return_predecessors=return_predecessors,
                        unweighted=unweighted, indices=indices)

    elif method == 'BF':
        return bellman_ford(csgraph, directed,
                            return_predecessors=return_predecessors,
                            unweighted=unweighted, indices=indices)

    elif method == 'J':
        return johnson(csgraph, directed,
                       return_predecessors=return_predecessors,
                       unweighted=unweighted, indices=indices)

    else:
        raise ValueError("unrecognized method '%s'" % method)


def floyd_warshall(csgraph, directed=True,
                   return_predecessors=False,
                   unweighted=False,
                   overwrite=False):
    """
    floyd_warshall(csgraph, directed=True, return_predecessors=False,
                   unweighted=False, overwrite=False)

    Compute the shortest path lengths using the Floyd-Warshall algorithm

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array, matrix, or sparse matrix, 2 dimensions
        The N x N array of distances representing the input graph.
    directed : bool, optional
        If True (default), then find the shortest path on a directed graph:
        only move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i]
    return_predecessors : bool, optional
        If True, return the size (N, N) predecesor matrix
    unweighted : bool, optional
        If True, then find unweighted distances.  That is, rather than finding
        the path between each point such that the sum of weights is minimized,
        find the path such that the number of edges is minimized.
    overwrite : bool, optional
        If True, overwrite csgraph with the result.  This applies only if
        csgraph is a dense, c-ordered array with dtype=float64.

    Returns
    -------
    dist_matrix : ndarray
        The N x N matrix of distances between graph nodes. dist_matrix[i,j]
        gives the shortest distance from point i to point j along the graph.

    predecessors : ndarray
        Returned only if return_predecessors == True.
        The N x N matrix of predecessors, which can be used to reconstruct
        the shortest paths.  Row i of the predecessor matrix contains
        information on the shortest paths from point i: each entry
        predecessors[i, j] gives the index of the previous node in the
        path from point i to point j.  If no path exists between point
        i and j, then predecessors[i, j] = -9999

    Raises
    ------
    NegativeCycleError:
        if there are negative cycles in the graph
    """
    dist_matrix = validate_graph(csgraph, directed, DTYPE,
                                 csr_output=False,
                                 copy_if_dense=not overwrite)

    if unweighted:
        dist_matrix[~np.isinf(dist_matrix)] = 1

    if return_predecessors:
        predecessor_matrix = np.empty(dist_matrix.shape,
                                      dtype=ITYPE, order='C')
    else:
        predecessor_matrix = np.empty((0, 0), dtype=ITYPE)

    _floyd_warshall(dist_matrix,
                    predecessor_matrix,
                    int(directed))

    if np.any(dist_matrix.diagonal() < 0):
        raise NegativeCycleError("Negative cycle in nodes %s"
                                 % np.where(dist_matrix.diagonal() < 0)[0])

    if return_predecessors:
        return dist_matrix, predecessor_matrix
    else:
        return dist_matrix


@cython.boundscheck(False)
cdef void _floyd_warshall(
               np.ndarray[DTYPE_t, ndim=2, mode='c'] dist_matrix,
               np.ndarray[ITYPE_t, ndim=2, mode='c'] predecessor_matrix,
               int directed=0):
    # dist_matrix : in/out
    #    on input, the graph
    #    on output, the matrix of shortest paths
    # dist_matrix should be a [N,N] matrix, such that dist_matrix[i, j]
    # is the distance from point i to point j.  Zero-distances imply that
    # the points are not connected.
    cdef int N = dist_matrix.shape[0]
    assert dist_matrix.shape[1] == N

    cdef unsigned int i, j, k

    cdef DTYPE_t d_ijk

    #----------------------------------------------------------------------
    #  Initialize distance matrix
    #   - set non-edges to infinity
    #   - set diagonal to zero
    #   - symmetrize matrix if non-directed graph is desired
    dist_matrix[dist_matrix == 0] = INFINITY
    dist_matrix.flat[::N + 1] = 0
    if not directed:
        for i in range(N):
            for j in range(i + 1, N):
                if dist_matrix[j, i] <= dist_matrix[i, j]:
                    dist_matrix[i, j] = dist_matrix[j, i]
                else:
                    dist_matrix[j, i] = dist_matrix[i, j]

    #----------------------------------------------------------------------
    #  Initialize predecessor matrix
    #   - check matrix size
    #   - initialize diagonal and all non-edges to NULL
    #   - initialize all edges to the row index
    cdef int store_predecessors = False

    if predecessor_matrix.size > 0:
        store_predecessors = True
        assert predecessor_matrix.shape[0] == N
        assert predecessor_matrix.shape[1] == N
        predecessor_matrix.fill(NULL_IDX)
        i_edge = np.where(~np.isinf(dist_matrix))
        predecessor_matrix[i_edge] = i_edge[0]
        predecessor_matrix.flat[::N + 1] = NULL_IDX

    # Now perform the Floyd-Warshall algorithm.
    # In each loop, this finds the shortest path from point i
    #  to point j using intermediate nodes 0 ... k
    if store_predecessors:
        for k in range(N):
            for i in range(N):
                if dist_matrix[i, k] == INFINITY:
                    continue
                for j in range(N):
                    d_ijk = dist_matrix[i, k] + dist_matrix[k, j]
                    if d_ijk < dist_matrix[i, j]:
                        dist_matrix[i, j] = d_ijk
                        predecessor_matrix[i, j] = predecessor_matrix[k, j]
    else:
        for k in range(N):
            for i in range(N):
                if dist_matrix[i, k] == INFINITY:
                    continue
                for j in range(N):
                    d_ijk = dist_matrix[i, k] + dist_matrix[k, j]
                    if d_ijk < dist_matrix[i, j]:
                        dist_matrix[i, j] = d_ijk



def dijkstra(csgraph, directed=True, indices=None,
             return_predecessors=False,
             unweighted=False, limit=np.inf):
    """
    dijkstra(csgraph, directed=True, indices=None, return_predecessors=False,
             unweighted=False, limit=np.inf)

    Dijkstra algorithm using Fibonacci Heaps

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array, matrix, or sparse matrix, 2 dimensions
        The N x N array of non-negative distances representing the input graph.
    directed : bool, optional
        If True (default), then find the shortest path on a directed graph:
        only move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i]
    indices : array_like or int, optional
        if specified, only compute the paths for the points at the given
        indices.
    return_predecessors : bool, optional
        If True, return the size (N, N) predecesor matrix
    unweighted : bool, optional
        If True, then find unweighted distances.  That is, rather than finding
        the path between each point such that the sum of weights is minimized,
        find the path such that the number of edges is minimized.
    limit : float, optional
        The maximum distance to calculate, must be >= 0. Using a smaller limit
        will decrease computation time by aborting calculations between pairs
        that are separated by a distance > limit. For such pairs, the distance
        will be equal to np.inf (i.e., not connected).

        .. versionadded:: 0.14.0

    Returns
    -------
    dist_matrix : ndarray
        The matrix of distances between graph nodes. dist_matrix[i,j]
        gives the shortest distance from point i to point j along the graph.

    predecessors : ndarray
        Returned only if return_predecessors == True.
        The matrix of predecessors, which can be used to reconstruct
        the shortest paths.  Row i of the predecessor matrix contains
        information on the shortest paths from point i: each entry
        predecessors[i, j] gives the index of the previous node in the
        path from point i to point j.  If no path exists between point
        i and j, then predecessors[i, j] = -9999

    Notes
    -----
    As currently implemented, Dijkstra's algorithm does not work for
    graphs with direction-dependent distances when directed == False.
    i.e., if csgraph[i,j] and csgraph[j,i] are not equal and
    both are nonzero, setting directed=False will not yield the correct
    result.

    Also, this routine does not work for graphs with negative
    distances.  Negative distances can lead to infinite cycles that must
    be handled by specialized algorithms such as Bellman-Ford's algorithm
    or Johnson's algorithm.
    """
    #------------------------------
    # validate csgraph and convert to csr matrix
    csgraph = validate_graph(csgraph, directed, DTYPE,
                             dense_output=False)

    if np.any(csgraph.data < 0):
        warnings.warn("Graph has negative weights: dijkstra will give "
                      "inaccurate results if the graph contains negative "
                      "cycles. Consider johnson or bellman_ford.")

    N = csgraph.shape[0]

    #------------------------------
    # intitialize/validate indices
    if indices is None:
        indices = np.arange(N, dtype=ITYPE)
        return_shape = indices.shape + (N,)
    else:
        indices = np.array(indices, order='C', dtype=ITYPE, copy=True)
        return_shape = indices.shape + (N,)
        indices = np.atleast_1d(indices).reshape(-1)
        indices[indices < 0] += N
        if np.any(indices < 0) or np.any(indices >= N):
            raise ValueError("indices out of range 0...N")

    cdef DTYPE_t limitf = limit
    if limitf < 0:
        raise ValueError('limit must be >= 0')

    #------------------------------
    # initialize dist_matrix for output
    dist_matrix = np.zeros((len(indices), N), dtype=DTYPE)
    dist_matrix.fill(np.inf)
    dist_matrix[np.arange(len(indices)), indices] = 0

    #------------------------------
    # initialize predecessors for output
    if return_predecessors:
        predecessor_matrix = np.empty((len(indices), N), dtype=ITYPE)
        predecessor_matrix.fill(NULL_IDX)
    else:
        predecessor_matrix = np.empty((0, N), dtype=ITYPE)

    if unweighted:
        csr_data = np.ones(csgraph.data.shape)
    else:
        csr_data = csgraph.data

    if directed:
        _dijkstra_directed(indices,
                           csr_data, csgraph.indices, csgraph.indptr,
                           dist_matrix, predecessor_matrix, limitf)
    else:
        csgraphT = csgraph.T.tocsr()
        if unweighted:
            csrT_data = csr_data
        else:
            csrT_data = csgraphT.data
        _dijkstra_undirected(indices,
                             csr_data, csgraph.indices, csgraph.indptr,
                             csrT_data, csgraphT.indices, csgraphT.indptr,
                             dist_matrix, predecessor_matrix, limitf)

    if return_predecessors:
        return (dist_matrix.reshape(return_shape),
                predecessor_matrix.reshape(return_shape))
    else:
        return dist_matrix.reshape(return_shape)


cdef _dijkstra_directed(
            np.ndarray[ITYPE_t, ndim=1, mode='c'] source_indices,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
            np.ndarray[DTYPE_t, ndim=2, mode='c'] dist_matrix,
            np.ndarray[ITYPE_t, ndim=2, mode='c'] pred,
            DTYPE_t limit):
    cdef unsigned int Nind = dist_matrix.shape[0]
    cdef unsigned int N = dist_matrix.shape[1]
    cdef unsigned int i, k, j_source, j_current
    cdef ITYPE_t j

    cdef DTYPE_t next_val

    cdef int return_pred = (pred.size > 0)

    cdef FibonacciHeap heap
    cdef FibonacciNode *v
    cdef FibonacciNode *current_node
    cdef FibonacciNode* nodes = <FibonacciNode*> malloc(N *
                                                        sizeof(FibonacciNode))

    for i in range(Nind):
        j_source = source_indices[i]

        for k in range(N):
            initialize_node(&nodes[k], k)

        dist_matrix[i, j_source] = 0
        heap.min_node = NULL
        insert_node(&heap, &nodes[j_source])

        while heap.min_node:
            v = remove_min(&heap)
            v.state = SCANNED

            for j in range(csr_indptr[v.index], csr_indptr[v.index + 1]):
                j_current = csr_indices[j]
                current_node = &nodes[j_current]
                if current_node.state != SCANNED:
                    next_val = v.val + csr_weights[j]
                    if next_val <= limit:
                        if current_node.state == NOT_IN_HEAP:
                            current_node.state = IN_HEAP
                            current_node.val = next_val
                            insert_node(&heap, current_node)
                            if return_pred:
                                pred[i, j_current] = v.index
                        elif current_node.val > next_val:
                            decrease_val(&heap, current_node,
                                         next_val)
                            if return_pred:
                                pred[i, j_current] = v.index

            #v has now been scanned: add the distance to the results
            dist_matrix[i, v.index] = v.val

    free(nodes)


cdef _dijkstra_undirected(
            np.ndarray[ITYPE_t, ndim=1, mode='c'] source_indices,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csrT_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csrT_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csrT_indptr,
            np.ndarray[DTYPE_t, ndim=2, mode='c'] dist_matrix,
            np.ndarray[ITYPE_t, ndim=2, mode='c'] pred,
            DTYPE_t limit):
    cdef unsigned int Nind = dist_matrix.shape[0]
    cdef unsigned int N = dist_matrix.shape[1]
    cdef unsigned int i, k, j_source, j_current
    cdef ITYPE_t j

    cdef DTYPE_t next_val

    cdef int return_pred = (pred.size > 0)

    cdef FibonacciHeap heap
    cdef FibonacciNode *v
    cdef FibonacciNode *current_node
    cdef FibonacciNode* nodes = <FibonacciNode*> malloc(N *
                                                        sizeof(FibonacciNode))

    for i in range(Nind):
        j_source = source_indices[i]

        for k in range(N):
            initialize_node(&nodes[k], k)

        dist_matrix[i, j_source] = 0
        heap.min_node = NULL
        insert_node(&heap, &nodes[j_source])

        while heap.min_node:
            v = remove_min(&heap)
            v.state = SCANNED

            for j in range(csr_indptr[v.index], csr_indptr[v.index + 1]):
                j_current = csr_indices[j]
                current_node = &nodes[j_current]
                if current_node.state != SCANNED:
                    next_val = v.val + csr_weights[j]
                    if next_val <= limit:
                        if current_node.state == NOT_IN_HEAP:
                            current_node.state = IN_HEAP
                            current_node.val = next_val
                            insert_node(&heap, current_node)
                            if return_pred:
                                pred[i, j_current] = v.index
                        elif current_node.val > next_val:
                            decrease_val(&heap, current_node,
                                         next_val)
                            if return_pred:
                                pred[i, j_current] = v.index

            for j in range(csrT_indptr[v.index], csrT_indptr[v.index + 1]):
                j_current = csrT_indices[j]
                current_node = &nodes[j_current]
                if current_node.state != SCANNED:
                    next_val = v.val + csrT_weights[j]
                    if next_val <= limit:
                        if current_node.state == NOT_IN_HEAP:
                            current_node.state = IN_HEAP
                            current_node.val = next_val
                            insert_node(&heap, current_node)
                            if return_pred:
                                pred[i, j_current] = v.index
                        elif current_node.val > next_val:
                            decrease_val(&heap, current_node, next_val)
                            if return_pred:
                                pred[i, j_current] = v.index

            #v has now been scanned: add the distance to the results
            dist_matrix[i, v.index] = v.val

    free(nodes)


def bellman_ford(csgraph, directed=True, indices=None,
                 return_predecessors=False,
                 unweighted=False):
    """
    bellman_ford(csgraph, directed=True, indices=None, return_predecessors=False,
                 unweighted=False)

    Compute the shortest path lengths using the Bellman-Ford algorithm.

    The Bellman-ford algorithm can robustly deal with graphs with negative
    weights.  If a negative cycle is detected, an error is raised.  For
    graphs without negative edge weights, dijkstra's algorithm may be faster.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array, matrix, or sparse matrix, 2 dimensions
        The N x N array of distances representing the input graph.
    directed : bool, optional
        If True (default), then find the shortest path on a directed graph:
        only move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i]
    indices : array_like or int, optional
        if specified, only compute the paths for the points at the given
        indices.
    return_predecessors : bool, optional
        If True, return the size (N, N) predecesor matrix
    unweighted : bool, optional
        If True, then find unweighted distances.  That is, rather than finding
        the path between each point such that the sum of weights is minimized,
        find the path such that the number of edges is minimized.

    Returns
    -------
    dist_matrix : ndarray
        The N x N matrix of distances between graph nodes. dist_matrix[i,j]
        gives the shortest distance from point i to point j along the graph.

    predecessors : ndarray
        Returned only if return_predecessors == True.
        The N x N matrix of predecessors, which can be used to reconstruct
        the shortest paths.  Row i of the predecessor matrix contains
        information on the shortest paths from point i: each entry
        predecessors[i, j] gives the index of the previous node in the
        path from point i to point j.  If no path exists between point
        i and j, then predecessors[i, j] = -9999

    Raises
    ------
    NegativeCycleError:
        if there are negative cycles in the graph

    Notes
    -----
    This routine is specially designed for graphs with negative edge weights.
    If all edge weights are positive, then Dijkstra's algorithm is a better
    choice.
    """
    #------------------------------
    # validate csgraph and convert to csr matrix
    csgraph = validate_graph(csgraph, directed, DTYPE,
                             dense_output=False)
    N = csgraph.shape[0]

    #------------------------------
    # intitialize/validate indices
    if indices is None:
        indices = np.arange(N, dtype=ITYPE)
    else:
        indices = np.array(indices, order='C', dtype=ITYPE)
        indices[indices < 0] += N
        if np.any(indices < 0) or np.any(indices >= N):
            raise ValueError("indices out of range 0...N")
    return_shape = indices.shape + (N,)
    indices = np.atleast_1d(indices).reshape(-1)

    #------------------------------
    # initialize dist_matrix for output
    dist_matrix = np.empty((len(indices), N), dtype=DTYPE)
    dist_matrix.fill(np.inf)
    dist_matrix[np.arange(len(indices)), indices] = 0

    #------------------------------
    # initialize predecessors for output
    if return_predecessors:
        predecessor_matrix = np.empty((len(indices), N), dtype=ITYPE)
        predecessor_matrix.fill(NULL_IDX)
    else:
        predecessor_matrix = np.empty((0, N), dtype=ITYPE)

    if unweighted:
        csr_data = np.ones(csgraph.data.shape)
    else:
        csr_data = csgraph.data

    if directed:
        ret = _bellman_ford_directed(indices,
                                     csr_data, csgraph.indices,
                                     csgraph.indptr,
                                     dist_matrix, predecessor_matrix)
    else:
        ret = _bellman_ford_undirected(indices,
                                       csr_data, csgraph.indices,
                                       csgraph.indptr,
                                       dist_matrix, predecessor_matrix)

    if ret >= 0:
        raise NegativeCycleError("Negative cycle detected on node %i" % ret)

    if return_predecessors:
        return (dist_matrix.reshape(return_shape),
                predecessor_matrix.reshape(return_shape))
    else:
        return dist_matrix.reshape(return_shape)


cdef int _bellman_ford_directed(
            np.ndarray[ITYPE_t, ndim=1, mode='c'] source_indices,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
            np.ndarray[DTYPE_t, ndim=2, mode='c'] dist_matrix,
            np.ndarray[ITYPE_t, ndim=2, mode='c'] pred):
    cdef unsigned int Nind = dist_matrix.shape[0]
    cdef unsigned int N = dist_matrix.shape[1]
    cdef unsigned int i, j, k, j_source, count

    cdef DTYPE_t d1, d2, w12

    cdef int return_pred = (pred.size > 0)

    for i in range(Nind):
        j_source = source_indices[i]

        # relax all edges N-1 times
        for count in range(N - 1):
            for j in range(N):
                d1 = dist_matrix[i, j]
                for k in range(csr_indptr[j], csr_indptr[j + 1]):
                    w12 = csr_weights[k]
                    d2 = dist_matrix[i, csr_indices[k]]
                    if d1 + w12 < d2:
                        dist_matrix[i, csr_indices[k]] = d1 + w12
                        if return_pred:
                            pred[i, csr_indices[k]] = j

        # check for negative-weight cycles
        for j in range(N):
            d1 = dist_matrix[i, j]
            for k in range(csr_indptr[j], csr_indptr[j + 1]):
                w12 = csr_weights[k]
                d2 = dist_matrix[i, csr_indices[k]]
                if d1 + w12 + DTYPE_EPS < d2:
                    return j_source

    return -1


cdef int _bellman_ford_undirected(
            np.ndarray[ITYPE_t, ndim=1, mode='c'] source_indices,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
            np.ndarray[DTYPE_t, ndim=2, mode='c'] dist_matrix,
            np.ndarray[ITYPE_t, ndim=2, mode='c'] pred):
    cdef unsigned int Nind = dist_matrix.shape[0]
    cdef unsigned int N = dist_matrix.shape[1]
    cdef unsigned int i, j, k, j_source, ind_k, count

    cdef DTYPE_t d1, d2, w12

    cdef int return_pred = (pred.size > 0)

    for i in range(Nind):
        j_source = source_indices[i]

        # relax all edges N-1 times
        for count in range(N - 1):
            for j in range(N):
                d1 = dist_matrix[i, j]
                for k in range(csr_indptr[j], csr_indptr[j + 1]):
                    w12 = csr_weights[k]
                    ind_k = csr_indices[k]
                    d2 = dist_matrix[i, ind_k]
                    if d1 + w12 < d2:
                        dist_matrix[i, ind_k] = d2 = d1 + w12
                        if return_pred:
                            pred[i, ind_k] = j
                    if d2 + w12 < d1:
                        dist_matrix[i, j] = d1 = d2 + w12
                        if return_pred:
                            pred[i, j] = ind_k

        # check for negative-weight cycles
        for j in range(N):
            d1 = dist_matrix[i, j]
            for k in range(csr_indptr[j], csr_indptr[j + 1]):
                w12 = csr_weights[k]
                d2 = dist_matrix[i, csr_indices[k]]
                if abs(d2 - d1) > w12 + DTYPE_EPS:
                    return j_source

    return -1


def johnson(csgraph, directed=True, indices=None,
            return_predecessors=False,
            unweighted=False):
    """
    johnson(csgraph, directed=True, indices=None, return_predecessors=False,
            unweighted=False)

    Compute the shortest path lengths using Johnson's algorithm.

    Johnson's algorithm combines the Bellman-Ford algorithm and Dijkstra's
    algorithm to quickly find shortest paths in a way that is robust to
    the presence of negative cycles.  If a negative cycle is detected,
    an error is raised.  For graphs without negative edge weights,
    dijkstra() may be faster.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array, matrix, or sparse matrix, 2 dimensions
        The N x N array of distances representing the input graph.
    directed : bool, optional
        If True (default), then find the shortest path on a directed graph:
        only move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i]
    indices : array_like or int, optional
        if specified, only compute the paths for the points at the given
        indices.
    return_predecessors : bool, optional
        If True, return the size (N, N) predecesor matrix
    unweighted : bool, optional
        If True, then find unweighted distances.  That is, rather than finding
        the path between each point such that the sum of weights is minimized,
        find the path such that the number of edges is minimized.

    Returns
    -------
    dist_matrix : ndarray
        The N x N matrix of distances between graph nodes. dist_matrix[i,j]
        gives the shortest distance from point i to point j along the graph.

    predecessors : ndarray
        Returned only if return_predecessors == True.
        The N x N matrix of predecessors, which can be used to reconstruct
        the shortest paths.  Row i of the predecessor matrix contains
        information on the shortest paths from point i: each entry
        predecessors[i, j] gives the index of the previous node in the
        path from point i to point j.  If no path exists between point
        i and j, then predecessors[i, j] = -9999

    Raises
    ------
    NegativeCycleError:
        if there are negative cycles in the graph

    Notes
    -----
    This routine is specially designed for graphs with negative edge weights.
    If all edge weights are positive, then Dijkstra's algorithm is a better
    choice.
    """
    #------------------------------
    # if unweighted, there are no negative weights: we just use dijkstra
    if unweighted:
        return dijkstra(csgraph, directed, indices,
                        return_predecessors, unweighted)

    #------------------------------
    # validate csgraph and convert to csr matrix
    csgraph = validate_graph(csgraph, directed, DTYPE,
                             dense_output=False)
    N = csgraph.shape[0]

    #------------------------------
    # initialize/validate indices
    if indices is None:
        indices = np.arange(N, dtype=ITYPE)
        return_shape = indices.shape + (N,)
    else:
        indices = np.array(indices, order='C', dtype=ITYPE)
        return_shape = indices.shape + (N,)
        indices = np.atleast_1d(indices).reshape(-1)
        indices[indices < 0] += N
        if np.any(indices < 0) or np.any(indices >= N):
            raise ValueError("indices out of range 0...N")

    #------------------------------
    # initialize dist_matrix for output
    dist_matrix = np.empty((len(indices), N), dtype=DTYPE)
    dist_matrix.fill(np.inf)
    dist_matrix[np.arange(len(indices)), indices] = 0

    #------------------------------
    # initialize predecessors for output
    if return_predecessors:
        predecessor_matrix = np.empty((len(indices), N), dtype=ITYPE)
        predecessor_matrix.fill(NULL_IDX)
    else:
        predecessor_matrix = np.empty((0, N), dtype=ITYPE)

    #------------------------------
    # initialize distance array
    dist_array = np.zeros(N, dtype=DTYPE)

    csr_data = csgraph.data.copy()

    #------------------------------
    # here we first add a single node to the graph, connected by a
    # directed edge of weight zero to each node, and perform bellman-ford
    if directed:
        ret = _johnson_directed(csr_data, csgraph.indices,
                                csgraph.indptr, dist_array)
    else:
        ret = _johnson_undirected(csr_data, csgraph.indices,
                                  csgraph.indptr, dist_array)

    if ret >= 0:
        raise NegativeCycleError("Negative cycle detected on node %i" % ret)

    #------------------------------
    # add the bellman-ford weights to the data
    _johnson_add_weights(csr_data, csgraph.indices,
                         csgraph.indptr, dist_array)

    if directed:
        _dijkstra_directed(indices,
                           csr_data, csgraph.indices, csgraph.indptr,
                           dist_matrix, predecessor_matrix, np.inf)
    else:
        csgraphT = csr_matrix((csr_data, csgraph.indices, csgraph.indptr),
                          csgraph.shape).T.tocsr()
        _johnson_add_weights(csgraphT.data, csgraphT.indices,
                             csgraphT.indptr, dist_array)
        _dijkstra_undirected(indices,
                             csr_data, csgraph.indices, csgraph.indptr,
                             csgraphT.data, csgraphT.indices, csgraphT.indptr,
                             dist_matrix, predecessor_matrix, np.inf)

    #------------------------------
    # correct the distance matrix for the bellman-ford weights
    dist_matrix += dist_array
    dist_matrix -= dist_array[:, None][indices]

    if return_predecessors:
        return (dist_matrix.reshape(return_shape),
                predecessor_matrix.reshape(return_shape))
    else:
        return dist_matrix.reshape(return_shape)


cdef void _johnson_add_weights(
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] dist_array):
    # let w(u, v) = w(u, v) + h(u) - h(v)
    cdef unsigned int j, k, N = dist_array.shape[0]

    for j in range(N):
        for k in range(csr_indptr[j], csr_indptr[j + 1]):
            csr_weights[k] += dist_array[j]
            csr_weights[k] -= dist_array[csr_indices[k]]


cdef int _johnson_directed(
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] dist_array):
    cdef unsigned int N = dist_array.shape[0]
    cdef unsigned int j, k, j_source, count

    cdef DTYPE_t d1, d2, w12

    # relax all edges (N+1) - 1 times
    for count in range(N):
        for k in range(N):
            if dist_array[k] < 0:
                dist_array[k] = 0

        for j in range(N):
            d1 = dist_array[j]
            for k in range(csr_indptr[j], csr_indptr[j + 1]):
                w12 = csr_weights[k]
                d2 = dist_array[csr_indices[k]]
                if d1 + w12 < d2:
                    dist_array[csr_indices[k]] = d1 + w12

    # check for negative-weight cycles
    for j in range(N):
        d1 = dist_array[j]
        for k in range(csr_indptr[j], csr_indptr[j + 1]):
            w12 = csr_weights[k]
            d2 = dist_array[csr_indices[k]]
            if d1 + w12 + DTYPE_EPS < d2:
                return j

    return -1


cdef int _johnson_undirected(
            np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
            np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
            np.ndarray[DTYPE_t, ndim=1, mode='c'] dist_array):
    cdef unsigned int N = dist_array.shape[0]
    cdef unsigned int j, k, j_source, count

    cdef DTYPE_t d1, d2, w12

    # relax all edges (N+1) - 1 times
    for count in range(N):
        for k in range(N):
            if dist_array[k] < 0:
                dist_array[k] = 0

        for j in range(N):
            d1 = dist_array[j]
            for k in range(csr_indptr[j], csr_indptr[j + 1]):
                w12 = csr_weights[k]
                ind_k = csr_indices[k]
                d2 = dist_array[ind_k]
                if d1 + w12 < d2:
                    dist_array[ind_k] = d1 + w12
                if d2 + w12 < d1:
                    dist_array[j] = d1 = d2 + w12

    # check for negative-weight cycles
    for j in range(N):
        d1 = dist_array[j]
        for k in range(csr_indptr[j], csr_indptr[j + 1]):
            w12 = csr_weights[k]
            d2 = dist_array[csr_indices[k]]
            if abs(d2 - d1) > w12 + DTYPE_EPS:
                return j

    return -1


######################################################################
# FibonacciNode structure
#  This structure and the operations on it are the nodes of the
#  Fibonacci heap.
#
cdef enum FibonacciState:
    SCANNED
    NOT_IN_HEAP
    IN_HEAP


cdef struct FibonacciNode:
    unsigned int index
    unsigned int rank
    FibonacciState state
    DTYPE_t val
    FibonacciNode* parent
    FibonacciNode* left_sibling
    FibonacciNode* right_sibling
    FibonacciNode* children


cdef void initialize_node(FibonacciNode* node,
                          unsigned int index,
                          DTYPE_t val=0):
    # Assumptions: - node is a valid pointer
    #              - node is not currently part of a heap
    node.index = index
    node.val = val
    node.rank = 0
    node.state = NOT_IN_HEAP

    node.parent = NULL
    node.left_sibling = NULL
    node.right_sibling = NULL
    node.children = NULL


cdef FibonacciNode* rightmost_sibling(FibonacciNode* node):
    # Assumptions: - node is a valid pointer
    cdef FibonacciNode* temp = node
    while(temp.right_sibling):
        temp = temp.right_sibling
    return temp


cdef FibonacciNode* leftmost_sibling(FibonacciNode* node):
    # Assumptions: - node is a valid pointer
    cdef FibonacciNode* temp = node
    while(temp.left_sibling):
        temp = temp.left_sibling
    return temp


cdef void add_child(FibonacciNode* node, FibonacciNode* new_child):
    # Assumptions: - node is a valid pointer
    #              - new_child is a valid pointer
    #              - new_child is not the sibling or child of another node
    new_child.parent = node

    if node.children:
        add_sibling(node.children, new_child)
    else:
        node.children = new_child
        new_child.right_sibling = NULL
        new_child.left_sibling = NULL
        node.rank = 1


cdef void add_sibling(FibonacciNode* node, FibonacciNode* new_sibling):
    # Assumptions: - node is a valid pointer
    #              - new_sibling is a valid pointer
    #              - new_sibling is not the child or sibling of another node
    cdef FibonacciNode* temp = rightmost_sibling(node)
    temp.right_sibling = new_sibling
    new_sibling.left_sibling = temp
    new_sibling.right_sibling = NULL
    new_sibling.parent = node.parent
    if new_sibling.parent:
        new_sibling.parent.rank += 1


cdef void remove(FibonacciNode* node):
    # Assumptions: - node is a valid pointer
    if node.parent:
        node.parent.rank -= 1
        if node.left_sibling:
            node.parent.children = node.left_sibling
        elif node.right_sibling:
            node.parent.children = node.right_sibling
        else:
            node.parent.children = NULL

    if node.left_sibling:
        node.left_sibling.right_sibling = node.right_sibling
    if node.right_sibling:
        node.right_sibling.left_sibling = node.left_sibling

    node.left_sibling = NULL
    node.right_sibling = NULL
    node.parent = NULL


######################################################################
# FibonacciHeap structure
#  This structure and operations on it use the FibonacciNode
#  routines to implement a Fibonacci heap

ctypedef FibonacciNode* pFibonacciNode


cdef struct FibonacciHeap:
    FibonacciNode* min_node
    pFibonacciNode[100] roots_by_rank  # maximum number of nodes is ~2^100.


cdef void insert_node(FibonacciHeap* heap,
                      FibonacciNode* node):
    # Assumptions: - heap is a valid pointer
    #              - node is a valid pointer
    #              - node is not the child or sibling of another node
    if heap.min_node:
        add_sibling(heap.min_node, node)
        if node.val < heap.min_node.val:
            heap.min_node = node
    else:
        heap.min_node = node


cdef void decrease_val(FibonacciHeap* heap,
                       FibonacciNode* node,
                       DTYPE_t newval):
    # Assumptions: - heap is a valid pointer
    #              - newval <= node.val
    #              - node is a valid pointer
    #              - node is not the child or sibling of another node
    #              - node is in the heap
    node.val = newval
    if node.parent and (node.parent.val >= newval):
        remove(node)
        insert_node(heap, node)
    elif heap.min_node.val > node.val:
        heap.min_node = node


cdef void link(FibonacciHeap* heap, FibonacciNode* node):
    # Assumptions: - heap is a valid pointer
    #              - node is a valid pointer
    #              - node is already within heap

    cdef FibonacciNode *linknode
    cdef FibonacciNode *parent
    cdef FibonacciNode *child

    if heap.roots_by_rank[node.rank] == NULL:
        heap.roots_by_rank[node.rank] = node
    else:
        linknode = heap.roots_by_rank[node.rank]
        heap.roots_by_rank[node.rank] = NULL

        if node.val < linknode.val or node == heap.min_node:
            remove(linknode)
            add_child(node, linknode)
            link(heap, node)
        else:
            remove(node)
            add_child(linknode, node)
            link(heap, linknode)


cdef FibonacciNode* remove_min(FibonacciHeap* heap):
    # Assumptions: - heap is a valid pointer
    #              - heap.min_node is a valid pointer
    cdef FibonacciNode *temp
    cdef FibonacciNode *temp_right
    cdef FibonacciNode *out
    cdef unsigned int i

    # make all min_node children into root nodes
    if heap.min_node.children:
        temp = leftmost_sibling(heap.min_node.children)
        temp_right = NULL

        while temp:
            temp_right = temp.right_sibling
            remove(temp)
            add_sibling(heap.min_node, temp)
            temp = temp_right

        heap.min_node.children = NULL

    # choose a root node other than min_node
    temp = leftmost_sibling(heap.min_node)
    if temp == heap.min_node:
        if heap.min_node.right_sibling:
            temp = heap.min_node.right_sibling
        else:
            out = heap.min_node
            heap.min_node = NULL
            return out

    # remove min_node, and point heap to the new min
    out = heap.min_node
    remove(heap.min_node)
    heap.min_node = temp

    # re-link the heap
    for i in range(100):
        heap.roots_by_rank[i] = NULL

    while temp:
        if temp.val < heap.min_node.val:
            heap.min_node = temp
        temp_right = temp.right_sibling
        link(heap, temp)
        temp = temp_right

    return out


######################################################################
# Debugging: Functions for printing the Fibonacci heap
#
#cdef void print_node(FibonacciNode* node, int level=0):
#    print '%s(%i,%i) %i' % (level*'   ', node.index, node.val, node.rank)
#    if node.children:
#        print_node(leftmost_sibling(node.children), level+1)
#    if node.right_sibling:
#        print_node(node.right_sibling, level)
#
#
#cdef void print_heap(FibonacciHeap* heap):
#    print "---------------------------------"
#    print "min node: (%i, %i)" % (heap.min_node.index, heap.min_node.val)
#    if heap.min_node:
#        print_node(leftmost_sibling(heap.min_node))
#    else:
#        print "[empty heap]"