File: _tools.pyx

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (455 lines) | stat: -rw-r--r-- 15,364 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""
Tools and utilities for working with compressed sparse graphs
"""

# Author: Jake Vanderplas  -- <vanderplas@astro.washington.edu>
# License: BSD, (C) 2012

from __future__ import absolute_import

import numpy as np
cimport numpy as np

from scipy.sparse import csr_matrix, isspmatrix,\
    isspmatrix_csr, isspmatrix_csc, isspmatrix_lil

include 'parameters.pxi'

def csgraph_from_masked(graph):
    """
    csgraph_from_masked(graph)

    Construct a CSR-format graph from a masked array.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : MaskedArray
        Input graph.  Shape should be (n_nodes, n_nodes).

    Returns
    -------
    csgraph : csr_matrix
        Compressed sparse representation of graph,
    """
    # check that graph is a square matrix
    graph = np.ma.asarray(graph)

    if graph.ndim != 2:
        raise ValueError("graph should have two dimensions")
    N = graph.shape[0]
    if graph.shape[1] != N:
        raise ValueError("graph should be a square array")

    # construct the csr matrix using graph and mask
    data = graph.compressed()
    mask = ~graph.mask

    data = np.asarray(data, dtype=DTYPE, order='c')

    idx_grid = np.empty((N, N), dtype=ITYPE)
    idx_grid[:] = np.arange(N, dtype=ITYPE)
    indices = np.asarray(idx_grid[mask], dtype=ITYPE, order='c')

    indptr = np.zeros(N + 1, dtype=ITYPE)
    indptr[1:] = mask.sum(1).cumsum()

    return csr_matrix((data, indices, indptr), (N, N))


def csgraph_masked_from_dense(graph,
                              null_value=0,
                              nan_null=True,
                              infinity_null=True,
                              copy=True):
    """
    csgraph_masked_from_dense(graph, null_value=0, nan_null=True,
                              infinity_null=True, copy=True)

    Construct a masked array graph representation from a dense matrix.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like
        Input graph.  Shape should be (n_nodes, n_nodes).
    null_value : float or None (optional)
        Value that denotes non-edges in the graph.  Default is zero.
    infinity_null : bool
        If True (default), then infinite entries (both positive and negative)
        are treated as null edges.
    nan_null : bool
        If True (default), then NaN entries are treated as non-edges

    Returns
    -------
    csgraph : MaskedArray
        masked array representation of graph
    """
    graph = np.array(graph, copy=copy)

    # check that graph is a square matrix
    if graph.ndim != 2:
        raise ValueError("graph should have two dimensions")
    N = graph.shape[0]
    if graph.shape[1] != N:
        raise ValueError("graph should be a square array")

    # check whether null_value is infinity or NaN
    if null_value is not None:
        null_value = DTYPE(null_value)
        if np.isnan(null_value):
            nan_null = True
            null_value = None
        elif np.isinf(null_value):
            infinity_null = True
            null_value = None

    # flag all the null edges
    if null_value is None:
        mask = np.zeros(graph.shape, dtype='bool')
        graph = np.ma.masked_array(graph, mask, copy=False)
    else:
        graph = np.ma.masked_values(graph, null_value, copy=False)

    if infinity_null:
        graph.mask |= np.isinf(graph)

    if nan_null:
        graph.mask |= np.isnan(graph)

    return graph


def csgraph_from_dense(graph,
                       null_value=0,
                       nan_null=True,
                       infinity_null=True):
    """
    csgraph_from_dense(graph, null_value=0, nan_null=True, infinity_null=True)

    Construct a CSR-format sparse graph from a dense matrix.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like
        Input graph.  Shape should be (n_nodes, n_nodes).
    null_value : float or None (optional)
        Value that denotes non-edges in the graph.  Default is zero.
    infinity_null : bool
        If True (default), then infinite entries (both positive and negative)
        are treated as null edges.
    nan_null : bool
        If True (default), then NaN entries are treated as non-edges

    Returns
    -------
    csgraph : csr_matrix
        Compressed sparse representation of graph,
    """
    return csgraph_from_masked(csgraph_masked_from_dense(graph,
                                                         null_value,
                                                         nan_null,
                                                         infinity_null))


def csgraph_to_dense(csgraph, null_value=0):
    """
    csgraph_to_dense(csgraph, null_value=0)

    Convert a sparse graph representation to a dense representation

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : csr_matrix, csc_matrix, or lil_matrix
        Sparse representation of a graph.
    null_value : float, optional
        The value used to indicate null edges in the dense representation.
        Default is 0.

    Returns
    -------
    graph : ndarray
        The dense representation of the sparse graph.

    Notes
    -----
    For normal sparse graph representations, calling csgraph_to_dense with
    null_value=0 produces an equivalent result to using dense format
    conversions in the main sparse package.  When the sparse representations
    have repeated values, however, the results will differ.  The tools in
    scipy.sparse will add repeating values to obtain a final value.  This
    function will select the minimum among repeating values to obtain a
    final value.  For example, here we'll create a two-node directed sparse
    graph with multiple edges from node 0 to node 1, of weights 2 and 3.
    This illustrates the difference in behavior:

    >>> from scipy.sparse import csr_matrix, csgraph
    >>> data = np.array([2, 3])
    >>> indices = np.array([1, 1])
    >>> indptr = np.array([0, 2, 2])
    >>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
    >>> M.toarray()
    array([[0, 5],
           [0, 0]])
    >>> csgraph.csgraph_to_dense(M)
    array([[0., 2.],
           [0., 0.]])

    The reason for this difference is to allow a compressed sparse graph to
    represent multiple edges between any two nodes.  As most sparse graph
    algorithms are concerned with the single lowest-cost edge between any
    two nodes, the default scipy.sparse behavior of summming multiple weights
    does not make sense in this context.

    The other reason for using this routine is to allow for graphs with
    zero-weight edges.  Let's look at the example of a two-node directed
    graph, connected by an edge of weight zero:

    >>> from scipy.sparse import csr_matrix, csgraph
    >>> data = np.array([0.0])
    >>> indices = np.array([1])
    >>> indptr = np.array([0, 1, 1])
    >>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
    >>> M.toarray()
    array([[0, 0],
           [0, 0]])
    >>> csgraph.csgraph_to_dense(M, np.inf)
    array([[ inf,   0.],
           [ inf,  inf]])

    In the first case, the zero-weight edge gets lost in the dense
    representation.  In the second case, we can choose a different null value
    and see the true form of the graph.
    """
    # Allow only csr, lil and csc matrices: other formats when converted to csr
    # combine duplicated edges: we don't want this to happen in the background.
    if isspmatrix_csc(csgraph) or isspmatrix_lil(csgraph):
        csgraph = csgraph.tocsr()
    elif not isspmatrix_csr(csgraph):
        raise ValueError("csgraph must be lil, csr, or csc format")

    N = csgraph.shape[0]
    if csgraph.shape[1] != N:
        raise ValueError('csgraph should be a square matrix')

    # get attribute arrays
    data = np.asarray(csgraph.data, dtype=DTYPE, order='C')
    indices = np.asarray(csgraph.indices, dtype=ITYPE, order='C')
    indptr = np.asarray(csgraph.indptr, dtype=ITYPE, order='C')

    # create the output array
    graph = np.empty(csgraph.shape, dtype=DTYPE)
    graph.fill(np.inf)
    _populate_graph(data, indices, indptr, graph, null_value)
    return graph


def csgraph_to_masked(csgraph):
    """
    csgraph_to_masked(csgraph)

    Convert a sparse graph representation to a masked array representation

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : csr_matrix, csc_matrix, or lil_matrix
        Sparse representation of a graph.

    Returns
    -------
    graph : MaskedArray
        The masked dense representation of the sparse graph.
    """
    return np.ma.masked_invalid(csgraph_to_dense(csgraph, np.nan))


cdef void _populate_graph(np.ndarray[DTYPE_t, ndim=1, mode='c'] data,
                          np.ndarray[ITYPE_t, ndim=1, mode='c'] indices,
                          np.ndarray[ITYPE_t, ndim=1, mode='c'] indptr,
                          np.ndarray[DTYPE_t, ndim=2, mode='c'] graph,
                          DTYPE_t null_value):
    # data, indices, indptr are the csr attributes of the sparse input.
    # on input, graph should be filled with infinities, and should be
    # of size [N, N], which is also the size of the sparse matrix
    cdef unsigned int N = graph.shape[0]
    cdef np.ndarray null_flag = np.ones((N, N), dtype=bool, order='C')
    cdef np.npy_bool* null_ptr = <np.npy_bool*> null_flag.data
    cdef unsigned int row, col, i

    for row in range(N):
        for i in range(indptr[row], indptr[row + 1]):
            col = indices[i]
            null_ptr[col] = 0
            # in case of multiple edges, we'll choose the smallest
            if data[i] < graph[row, col]:
                graph[row, col] = data[i]
        null_ptr += N

    graph[null_flag] = null_value


def reconstruct_path(csgraph, predecessors, directed=True):
    """
    reconstruct_path(csgraph, predecessors, directed=True)

    Construct a tree from a graph and a predecessor list.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the directed or undirected graph
        from which the predecessors are drawn.
    predecessors : array_like, one dimension
        The length-N array of indices of predecessors for the tree.  The
        index of the parent of node i is given by predecessors[i].
    directed : bool, optional
        If True (default), then operate on a directed graph: only move from
        point i to point j along paths csgraph[i, j].
        If False, then operate on an undirected graph: the algorithm can
        progress from point i to j along csgraph[i, j] or csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the tree drawn
        from csgraph which is encoded by the predecessor list.
    """
    from ._validation import validate_graph
    csgraph = validate_graph(csgraph, directed, dense_output=False)

    N = csgraph.shape[0]

    nnull = (predecessors < 0).sum()

    indices = np.argsort(predecessors)[nnull:].astype(ITYPE)
    pind = predecessors[indices]
    indptr = pind.searchsorted(np.arange(N + 1)).astype(ITYPE)

    data = csgraph[pind, indices]

    # Fix issue #4018:
    # If `pind` and `indices` are empty arrays, `data` is a sparse matrix
    # (it is a numpy.matrix otherwise); handle this case separately.
    if isspmatrix(data):
        data = data.todense()
    data = data.getA1()

    if not directed:
        data2 = csgraph[indices, pind]
        if isspmatrix(data2):
            data2 = data2.todense()
        data2 = data2.getA1()
        data[data == 0] = np.inf
        data2[data2 == 0] = np.inf
        data = np.minimum(data, data2)

    return csr_matrix((data, indices, indptr), shape=(N, N))


def construct_dist_matrix(graph,
                          predecessors,
                          directed=True,
                          null_value=np.inf):
    """
    construct_dist_matrix(graph, predecessors, directed=True, null_value=np.inf)

    Construct distance matrix from a predecessor matrix

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like or sparse
        The N x N matrix representation of a directed or undirected graph.
        If dense, then non-edges are indicated by zeros or infinities.
    predecessors : array_like
        The N x N matrix of predecessors of each node (see Notes below).
    directed : bool, optional
        If True (default), then operate on a directed graph: only move from
        point i to point j along paths csgraph[i, j].
        If False, then operate on an undirected graph: the algorithm can
        progress from point i to j along csgraph[i, j] or csgraph[j, i].
    null_value : bool, optional
        value to use for distances between unconnected nodes.  Default is
        np.inf

    Returns
    -------
    dist_matrix : ndarray
        The N x N matrix of distances between nodes along the path specified
        by the predecessor matrix.  If no path exists, the distance is zero.

    Notes
    -----
    The predecessor matrix is of the form returned by
    :func:`graph_shortest_path`.  Row i of the predecessor matrix contains
    information on the shortest paths from point i: each entry
    predecessors[i, j] gives the index of the previous node in the path from
    point i to point j.  If no path exists between point i and j, then
    predecessors[i, j] = -9999
    """
    from ._validation import validate_graph
    graph = validate_graph(graph, directed, dtype=DTYPE,
                           csr_output=False,
                           copy_if_dense=not directed)
    predecessors = np.asarray(predecessors)

    if predecessors.shape != graph.shape:
        raise ValueError("graph and predecessors must have the same shape")

    dist_matrix = np.zeros(graph.shape, dtype=DTYPE)
    _construct_dist_matrix(graph, predecessors, dist_matrix,
                           directed, null_value)

    return dist_matrix


cdef void _construct_dist_matrix(np.ndarray[DTYPE_t, ndim=2] graph,
                                 np.ndarray[ITYPE_t, ndim=2] pred,
                                 np.ndarray[DTYPE_t, ndim=2] dist,
                                 int directed,
                                 DTYPE_t null_value):
    # All matrices should be size N x N
    # note that graph will be modified if directed == False
    # dist should be all zero on entry
    global NULL_IDX

    cdef int i, j, k1, k2, N, null_path
    N = graph.shape[0]

    #------------------------------------------
    # symmetrize matrix if necessary
    if not directed:
        graph[graph == 0] = np.inf
        for i in range(N):
            for j in range(i + 1, N):
                if graph[j, i] <= graph[i, j]:
                    graph[i, j] = graph[j, i]
                else:
                    graph[j, i] = graph[i, j]
    #------------------------------------------

    for i in range(N):
        for j in range(N):
            null_path = True
            k2 = j
            while k2 != i:
                k1 = pred[i, k2]
                if k1 == NULL_IDX:
                    break
                dist[i, j] += graph[k1, k2]
                null_path = False
                k2 = k1
            if null_path and i != j:
                dist[i, j] = null_value