1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_equal
from pytest import raises as assert_raises
from scipy.sparse.csgraph import (shortest_path, dijkstra, johnson,
bellman_ford, construct_dist_matrix, NegativeCycleError)
directed_G = np.array([[0, 3, 3, 0, 0],
[0, 0, 0, 2, 4],
[0, 0, 0, 0, 0],
[1, 0, 0, 0, 0],
[2, 0, 0, 2, 0]], dtype=float)
undirected_G = np.array([[0, 3, 3, 1, 2],
[3, 0, 0, 2, 4],
[3, 0, 0, 0, 0],
[1, 2, 0, 0, 2],
[2, 4, 0, 2, 0]], dtype=float)
unweighted_G = (directed_G > 0).astype(float)
directed_SP = [[0, 3, 3, 5, 7],
[3, 0, 6, 2, 4],
[np.inf, np.inf, 0, np.inf, np.inf],
[1, 4, 4, 0, 8],
[2, 5, 5, 2, 0]]
directed_pred = np.array([[-9999, 0, 0, 1, 1],
[3, -9999, 0, 1, 1],
[-9999, -9999, -9999, -9999, -9999],
[3, 0, 0, -9999, 1],
[4, 0, 0, 4, -9999]], dtype=float)
undirected_SP = np.array([[0, 3, 3, 1, 2],
[3, 0, 6, 2, 4],
[3, 6, 0, 4, 5],
[1, 2, 4, 0, 2],
[2, 4, 5, 2, 0]], dtype=float)
undirected_SP_limit_2 = np.array([[0, np.inf, np.inf, 1, 2],
[np.inf, 0, np.inf, 2, np.inf],
[np.inf, np.inf, 0, np.inf, np.inf],
[1, 2, np.inf, 0, 2],
[2, np.inf, np.inf, 2, 0]], dtype=float)
undirected_SP_limit_0 = np.ones((5, 5), dtype=float) - np.eye(5)
undirected_SP_limit_0[undirected_SP_limit_0 > 0] = np.inf
undirected_pred = np.array([[-9999, 0, 0, 0, 0],
[1, -9999, 0, 1, 1],
[2, 0, -9999, 0, 0],
[3, 3, 0, -9999, 3],
[4, 4, 0, 4, -9999]], dtype=float)
methods = ['auto', 'FW', 'D', 'BF', 'J']
def test_dijkstra_limit():
limits = [0, 2, np.inf]
results = [undirected_SP_limit_0,
undirected_SP_limit_2,
undirected_SP]
def check(limit, result):
SP = dijkstra(undirected_G, directed=False, limit=limit)
assert_array_almost_equal(SP, result)
for limit, result in zip(limits, results):
check(limit, result)
def test_directed():
def check(method):
SP = shortest_path(directed_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP, directed_SP)
for method in methods:
check(method)
def test_undirected():
def check(method, directed_in):
if directed_in:
SP1 = shortest_path(directed_G, method=method, directed=False,
overwrite=False)
assert_array_almost_equal(SP1, undirected_SP)
else:
SP2 = shortest_path(undirected_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP2, undirected_SP)
for method in methods:
for directed_in in (True, False):
check(method, directed_in)
def test_shortest_path_indices():
indices = np.arange(4)
def check(func, indshape):
outshape = indshape + (5,)
SP = func(directed_G, directed=False,
indices=indices.reshape(indshape))
assert_array_almost_equal(SP, undirected_SP[indices].reshape(outshape))
for indshape in [(4,), (4, 1), (2, 2)]:
for func in (dijkstra, bellman_ford, johnson, shortest_path):
check(func, indshape)
assert_raises(ValueError, shortest_path, directed_G, method='FW',
indices=indices)
def test_predecessors():
SP_res = {True: directed_SP,
False: undirected_SP}
pred_res = {True: directed_pred,
False: undirected_pred}
def check(method, directed):
SP, pred = shortest_path(directed_G, method, directed=directed,
overwrite=False,
return_predecessors=True)
assert_array_almost_equal(SP, SP_res[directed])
assert_array_almost_equal(pred, pred_res[directed])
for method in methods:
for directed in (True, False):
check(method, directed)
def test_construct_shortest_path():
def check(method, directed):
SP1, pred = shortest_path(directed_G,
directed=directed,
overwrite=False,
return_predecessors=True)
SP2 = construct_dist_matrix(directed_G, pred, directed=directed)
assert_array_almost_equal(SP1, SP2)
for method in methods:
for directed in (True, False):
check(method, directed)
def test_unweighted_path():
def check(method, directed):
SP1 = shortest_path(directed_G,
directed=directed,
overwrite=False,
unweighted=True)
SP2 = shortest_path(unweighted_G,
directed=directed,
overwrite=False,
unweighted=False)
assert_array_almost_equal(SP1, SP2)
for method in methods:
for directed in (True, False):
check(method, directed)
def test_negative_cycles():
# create a small graph with a negative cycle
graph = np.ones([5, 5])
graph.flat[::6] = 0
graph[1, 2] = -2
def check(method, directed):
assert_raises(NegativeCycleError, shortest_path, graph, method,
directed)
for method in ['FW', 'J', 'BF']:
for directed in (True, False):
check(method, directed)
def test_masked_input():
G = np.ma.masked_equal(directed_G, 0)
def check(method):
SP = shortest_path(directed_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP, directed_SP)
for method in methods:
check(method)
def test_overwrite():
G = np.array([[0, 3, 3, 1, 2],
[3, 0, 0, 2, 4],
[3, 0, 0, 0, 0],
[1, 2, 0, 0, 2],
[2, 4, 0, 2, 0]], dtype=float)
foo = G.copy()
shortest_path(foo, overwrite=False)
assert_array_equal(foo, G)
|