File: test_shortest_path.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (202 lines) | stat: -rw-r--r-- 6,718 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from __future__ import division, print_function, absolute_import

import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_equal
from pytest import raises as assert_raises
from scipy.sparse.csgraph import (shortest_path, dijkstra, johnson,
    bellman_ford, construct_dist_matrix, NegativeCycleError)


directed_G = np.array([[0, 3, 3, 0, 0],
                       [0, 0, 0, 2, 4],
                       [0, 0, 0, 0, 0],
                       [1, 0, 0, 0, 0],
                       [2, 0, 0, 2, 0]], dtype=float)

undirected_G = np.array([[0, 3, 3, 1, 2],
                         [3, 0, 0, 2, 4],
                         [3, 0, 0, 0, 0],
                         [1, 2, 0, 0, 2],
                         [2, 4, 0, 2, 0]], dtype=float)

unweighted_G = (directed_G > 0).astype(float)

directed_SP = [[0, 3, 3, 5, 7],
               [3, 0, 6, 2, 4],
               [np.inf, np.inf, 0, np.inf, np.inf],
               [1, 4, 4, 0, 8],
               [2, 5, 5, 2, 0]]

directed_pred = np.array([[-9999, 0, 0, 1, 1],
                          [3, -9999, 0, 1, 1],
                          [-9999, -9999, -9999, -9999, -9999],
                          [3, 0, 0, -9999, 1],
                          [4, 0, 0, 4, -9999]], dtype=float)

undirected_SP = np.array([[0, 3, 3, 1, 2],
                          [3, 0, 6, 2, 4],
                          [3, 6, 0, 4, 5],
                          [1, 2, 4, 0, 2],
                          [2, 4, 5, 2, 0]], dtype=float)

undirected_SP_limit_2 = np.array([[0, np.inf, np.inf, 1, 2],
                                  [np.inf, 0, np.inf, 2, np.inf],
                                  [np.inf, np.inf, 0, np.inf, np.inf],
                                  [1, 2, np.inf, 0, 2],
                                  [2, np.inf, np.inf, 2, 0]], dtype=float)

undirected_SP_limit_0 = np.ones((5, 5), dtype=float) - np.eye(5)
undirected_SP_limit_0[undirected_SP_limit_0 > 0] = np.inf

undirected_pred = np.array([[-9999, 0, 0, 0, 0],
                            [1, -9999, 0, 1, 1],
                            [2, 0, -9999, 0, 0],
                            [3, 3, 0, -9999, 3],
                            [4, 4, 0, 4, -9999]], dtype=float)

methods = ['auto', 'FW', 'D', 'BF', 'J']


def test_dijkstra_limit():
    limits = [0, 2, np.inf]
    results = [undirected_SP_limit_0,
               undirected_SP_limit_2,
               undirected_SP]

    def check(limit, result):
        SP = dijkstra(undirected_G, directed=False, limit=limit)
        assert_array_almost_equal(SP, result)

    for limit, result in zip(limits, results):
        check(limit, result)


def test_directed():
    def check(method):
        SP = shortest_path(directed_G, method=method, directed=True,
                           overwrite=False)
        assert_array_almost_equal(SP, directed_SP)

    for method in methods:
        check(method)


def test_undirected():
    def check(method, directed_in):
        if directed_in:
            SP1 = shortest_path(directed_G, method=method, directed=False,
                                overwrite=False)
            assert_array_almost_equal(SP1, undirected_SP)
        else:
            SP2 = shortest_path(undirected_G, method=method, directed=True,
                                overwrite=False)
            assert_array_almost_equal(SP2, undirected_SP)

    for method in methods:
        for directed_in in (True, False):
            check(method, directed_in)


def test_shortest_path_indices():
    indices = np.arange(4)

    def check(func, indshape):
        outshape = indshape + (5,)
        SP = func(directed_G, directed=False,
                  indices=indices.reshape(indshape))
        assert_array_almost_equal(SP, undirected_SP[indices].reshape(outshape))

    for indshape in [(4,), (4, 1), (2, 2)]:
        for func in (dijkstra, bellman_ford, johnson, shortest_path):
            check(func, indshape)

    assert_raises(ValueError, shortest_path, directed_G, method='FW',
                  indices=indices)


def test_predecessors():
    SP_res = {True: directed_SP,
              False: undirected_SP}
    pred_res = {True: directed_pred,
                False: undirected_pred}

    def check(method, directed):
        SP, pred = shortest_path(directed_G, method, directed=directed,
                                 overwrite=False,
                                 return_predecessors=True)
        assert_array_almost_equal(SP, SP_res[directed])
        assert_array_almost_equal(pred, pred_res[directed])

    for method in methods:
        for directed in (True, False):
            check(method, directed)


def test_construct_shortest_path():
    def check(method, directed):
        SP1, pred = shortest_path(directed_G,
                                  directed=directed,
                                  overwrite=False,
                                  return_predecessors=True)
        SP2 = construct_dist_matrix(directed_G, pred, directed=directed)
        assert_array_almost_equal(SP1, SP2)

    for method in methods:
        for directed in (True, False):
            check(method, directed)


def test_unweighted_path():
    def check(method, directed):
        SP1 = shortest_path(directed_G,
                            directed=directed,
                            overwrite=False,
                            unweighted=True)
        SP2 = shortest_path(unweighted_G,
                            directed=directed,
                            overwrite=False,
                            unweighted=False)
        assert_array_almost_equal(SP1, SP2)

    for method in methods:
        for directed in (True, False):
            check(method, directed)


def test_negative_cycles():
    # create a small graph with a negative cycle
    graph = np.ones([5, 5])
    graph.flat[::6] = 0
    graph[1, 2] = -2

    def check(method, directed):
        assert_raises(NegativeCycleError, shortest_path, graph, method,
                      directed)

    for method in ['FW', 'J', 'BF']:
        for directed in (True, False):
            check(method, directed)


def test_masked_input():
    G = np.ma.masked_equal(directed_G, 0)

    def check(method):
        SP = shortest_path(directed_G, method=method, directed=True,
                           overwrite=False)
        assert_array_almost_equal(SP, directed_SP)

    for method in methods:
        check(method)


def test_overwrite():
    G = np.array([[0, 3, 3, 1, 2],
                  [3, 0, 0, 2, 4],
                  [3, 0, 0, 0, 0],
                  [1, 2, 0, 0, 2],
                  [2, 4, 0, 2, 0]], dtype=float)
    foo = G.copy()
    shortest_path(foo, overwrite=False)
    assert_array_equal(foo, G)