File: dia.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (420 lines) | stat: -rw-r--r-- 13,941 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
"""Sparse DIAgonal format"""

from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['dia_matrix', 'isspmatrix_dia']

import numpy as np

from .base import isspmatrix, _formats, spmatrix
from .data import _data_matrix
from .sputils import (isshape, upcast_char, getdtype, get_index_dtype,
                      get_sum_dtype, validateaxis, check_shape, matrix)
from ._sparsetools import dia_matvec


class dia_matrix(_data_matrix):
    """Sparse matrix with DIAgonal storage

    This can be instantiated in several ways:
        dia_matrix(D)
            with a dense matrix

        dia_matrix(S)
            with another sparse matrix S (equivalent to S.todia())

        dia_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N),
            dtype is optional, defaulting to dtype='d'.

        dia_matrix((data, offsets), shape=(M, N))
            where the ``data[k,:]`` stores the diagonal entries for
            diagonal ``offsets[k]`` (See example below)

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of nonzero elements
    data
        DIA format data array of the matrix
    offsets
        DIA format offset array of the matrix

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Examples
    --------

    >>> import numpy as np
    >>> from scipy.sparse import dia_matrix
    >>> dia_matrix((3, 4), dtype=np.int8).toarray()
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]], dtype=int8)

    >>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
    >>> offsets = np.array([0, -1, 2])
    >>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
    array([[1, 0, 3, 0],
           [1, 2, 0, 4],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    """
    format = 'dia'

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isspmatrix_dia(arg1):
            if copy:
                arg1 = arg1.copy()
            self.data = arg1.data
            self.offsets = arg1.offsets
            self._shape = check_shape(arg1.shape)
        elif isspmatrix(arg1):
            if isspmatrix_dia(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.todia()
            self.data = A.data
            self.offsets = A.offsets
            self._shape = check_shape(A.shape)
        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self._shape = check_shape(arg1)
                self.data = np.zeros((0,0), getdtype(dtype, default=float))
                idx_dtype = get_index_dtype(maxval=max(self.shape))
                self.offsets = np.zeros((0), dtype=idx_dtype)
            else:
                try:
                    # Try interpreting it as (data, offsets)
                    data, offsets = arg1
                except:
                    raise ValueError('unrecognized form for dia_matrix constructor')
                else:
                    if shape is None:
                        raise ValueError('expected a shape argument')
                    self.data = np.atleast_2d(np.array(arg1[0], dtype=dtype, copy=copy))
                    self.offsets = np.atleast_1d(np.array(arg1[1],
                                                          dtype=get_index_dtype(maxval=max(shape)),
                                                          copy=copy))
                    self._shape = check_shape(shape)
        else:
            #must be dense, convert to COO first, then to DIA
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized form for"
                        " %s_matrix constructor" % self.format)
            from .coo import coo_matrix
            A = coo_matrix(arg1, dtype=dtype, shape=shape).todia()
            self.data = A.data
            self.offsets = A.offsets
            self._shape = check_shape(A.shape)

        if dtype is not None:
            self.data = self.data.astype(dtype)

        #check format
        if self.offsets.ndim != 1:
            raise ValueError('offsets array must have rank 1')

        if self.data.ndim != 2:
            raise ValueError('data array must have rank 2')

        if self.data.shape[0] != len(self.offsets):
            raise ValueError('number of diagonals (%d) '
                    'does not match the number of offsets (%d)'
                    % (self.data.shape[0], len(self.offsets)))

        if len(np.unique(self.offsets)) != len(self.offsets):
            raise ValueError('offset array contains duplicate values')

    def __repr__(self):
        format = _formats[self.getformat()][1]
        return "<%dx%d sparse matrix of type '%s'\n" \
               "\twith %d stored elements (%d diagonals) in %s format>" % \
               (self.shape + (self.dtype.type, self.nnz, self.data.shape[0],
                              format))

    def _data_mask(self):
        """Returns a mask of the same shape as self.data, where
        mask[i,j] is True when data[i,j] corresponds to a stored element."""
        num_rows, num_cols = self.shape
        offset_inds = np.arange(self.data.shape[1])
        row = offset_inds - self.offsets[:,None]
        mask = (row >= 0)
        mask &= (row < num_rows)
        mask &= (offset_inds < num_cols)
        return mask

    def count_nonzero(self):
        mask = self._data_mask()
        return np.count_nonzero(self.data[mask])

    def getnnz(self, axis=None):
        if axis is not None:
            raise NotImplementedError("getnnz over an axis is not implemented "
                                      "for DIA format")
        M,N = self.shape
        nnz = 0
        for k in self.offsets:
            if k > 0:
                nnz += min(M,N-k)
            else:
                nnz += min(M+k,N)
        return int(nnz)

    getnnz.__doc__ = spmatrix.getnnz.__doc__
    count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__

    def sum(self, axis=None, dtype=None, out=None):
        validateaxis(axis)

        if axis is not None and axis < 0:
            axis += 2

        res_dtype = get_sum_dtype(self.dtype)
        num_rows, num_cols = self.shape
        ret = None

        if axis == 0:
            mask = self._data_mask()
            x = (self.data * mask).sum(axis=0)
            if x.shape[0] == num_cols:
                res = x
            else:
                res = np.zeros(num_cols, dtype=x.dtype)
                res[:x.shape[0]] = x
            ret = matrix(res, dtype=res_dtype)

        else:
            row_sums = np.zeros(num_rows, dtype=res_dtype)
            one = np.ones(num_cols, dtype=res_dtype)
            dia_matvec(num_rows, num_cols, len(self.offsets),
                       self.data.shape[1], self.offsets, self.data, one, row_sums)

            row_sums = matrix(row_sums)

            if axis is None:
                return row_sums.sum(dtype=dtype, out=out)

            if axis is not None:
                row_sums = row_sums.T

            ret = matrix(row_sums.sum(axis=axis))

        if out is not None and out.shape != ret.shape:
            raise ValueError("dimensions do not match")

        return ret.sum(axis=(), dtype=dtype, out=out)

    sum.__doc__ = spmatrix.sum.__doc__

    def _mul_vector(self, other):
        x = other

        y = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char,
                                                       x.dtype.char))

        L = self.data.shape[1]

        M,N = self.shape

        dia_matvec(M,N, len(self.offsets), L, self.offsets, self.data, x.ravel(), y.ravel())

        return y

    def _mul_multimatrix(self, other):
        return np.hstack([self._mul_vector(col).reshape(-1,1) for col in other.T])

    def _setdiag(self, values, k=0):
        M, N = self.shape

        if values.ndim == 0:
            # broadcast
            values_n = np.inf
        else:
            values_n = len(values)

        if k < 0:
            n = min(M + k, N, values_n)
            min_index = 0
            max_index = n
        else:
            n = min(M, N - k, values_n)
            min_index = k
            max_index = k + n

        if values.ndim != 0:
            # allow also longer sequences
            values = values[:n]

        if k in self.offsets:
            self.data[self.offsets == k, min_index:max_index] = values
        else:
            self.offsets = np.append(self.offsets, self.offsets.dtype.type(k))
            m = max(max_index, self.data.shape[1])
            data = np.zeros((self.data.shape[0]+1, m), dtype=self.data.dtype)
            data[:-1,:self.data.shape[1]] = self.data
            data[-1, min_index:max_index] = values
            self.data = data

    def todia(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    todia.__doc__ = spmatrix.todia.__doc__

    def transpose(self, axes=None, copy=False):
        if axes is not None:
            raise ValueError(("Sparse matrices do not support "
                              "an 'axes' parameter because swapping "
                              "dimensions is the only logical permutation."))

        num_rows, num_cols = self.shape
        max_dim = max(self.shape)

        # flip diagonal offsets
        offsets = -self.offsets

        # re-align the data matrix
        r = np.arange(len(offsets), dtype=np.intc)[:, None]
        c = np.arange(num_rows, dtype=np.intc) - (offsets % max_dim)[:, None]
        pad_amount = max(0, max_dim-self.data.shape[1])
        data = np.hstack((self.data, np.zeros((self.data.shape[0], pad_amount),
                                              dtype=self.data.dtype)))
        data = data[r, c]
        return dia_matrix((data, offsets), shape=(
            num_cols, num_rows), copy=copy)

    transpose.__doc__ = spmatrix.transpose.__doc__

    def diagonal(self, k=0):
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            raise ValueError("k exceeds matrix dimensions")
        idx, = np.where(self.offsets == k)
        first_col, last_col = max(0, k), min(rows + k, cols)
        if idx.size == 0:
            return np.zeros(last_col - first_col, dtype=self.data.dtype)
        return self.data[idx[0], first_col:last_col]

    diagonal.__doc__ = spmatrix.diagonal.__doc__

    def tocsc(self, copy=False):
        from .csc import csc_matrix
        if self.nnz == 0:
            return csc_matrix(self.shape, dtype=self.dtype)

        num_rows, num_cols = self.shape
        num_offsets, offset_len = self.data.shape
        offset_inds = np.arange(offset_len)

        row = offset_inds - self.offsets[:,None]
        mask = (row >= 0)
        mask &= (row < num_rows)
        mask &= (offset_inds < num_cols)
        mask &= (self.data != 0)

        idx_dtype = get_index_dtype(maxval=max(self.shape))
        indptr = np.zeros(num_cols + 1, dtype=idx_dtype)
        indptr[1:offset_len+1] = np.cumsum(mask.sum(axis=0))
        indptr[offset_len+1:] = indptr[offset_len]
        indices = row.T[mask.T].astype(idx_dtype, copy=False)
        data = self.data.T[mask.T]
        return csc_matrix((data, indices, indptr), shape=self.shape,
                          dtype=self.dtype)

    tocsc.__doc__ = spmatrix.tocsc.__doc__

    def tocoo(self, copy=False):
        num_rows, num_cols = self.shape
        num_offsets, offset_len = self.data.shape
        offset_inds = np.arange(offset_len)

        row = offset_inds - self.offsets[:,None]
        mask = (row >= 0)
        mask &= (row < num_rows)
        mask &= (offset_inds < num_cols)
        mask &= (self.data != 0)
        row = row[mask]
        col = np.tile(offset_inds, num_offsets)[mask.ravel()]
        data = self.data[mask]

        from .coo import coo_matrix
        A = coo_matrix((data,(row,col)), shape=self.shape, dtype=self.dtype)
        A.has_canonical_format = True
        return A

    tocoo.__doc__ = spmatrix.tocoo.__doc__

    # needed by _data_matrix
    def _with_data(self, data, copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data.  By default the structure arrays are copied.
        """
        if copy:
            return dia_matrix((data, self.offsets.copy()), shape=self.shape)
        else:
            return dia_matrix((data,self.offsets), shape=self.shape)

    def resize(self, *shape):
        shape = check_shape(shape)
        M, N = shape
        # we do not need to handle the case of expanding N
        self.data = self.data[:, :N]

        if (M > self.shape[0] and
                np.any(self.offsets + self.shape[0] < self.data.shape[1])):
            # explicitly clear values that were previously hidden
            mask = (self.offsets[:, None] + self.shape[0] <=
                    np.arange(self.data.shape[1]))
            self.data[mask] = 0

        self._shape = shape

    resize.__doc__ = spmatrix.resize.__doc__


def isspmatrix_dia(x):
    """Is x of dia_matrix type?

    Parameters
    ----------
    x
        object to check for being a dia matrix

    Returns
    -------
    bool
        True if x is a dia matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import dia_matrix, isspmatrix_dia
    >>> isspmatrix_dia(dia_matrix([[5]]))
    True

    >>> from scipy.sparse import dia_matrix, csr_matrix, isspmatrix_dia
    >>> isspmatrix_dia(csr_matrix([[5]]))
    False
    """
    return isinstance(x, dia_matrix)