File: dok.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (538 lines) | stat: -rw-r--r-- 18,763 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
"""Dictionary Of Keys based matrix"""

from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['dok_matrix', 'isspmatrix_dok']

import functools
import operator
import itertools

import numpy as np

from scipy._lib.six import zip as izip, xrange, iteritems, iterkeys, itervalues

from .base import spmatrix, isspmatrix
from .sputils import (isdense, getdtype, isshape, isintlike, isscalarlike,
                      upcast, upcast_scalar, IndexMixin, get_index_dtype,
                      check_shape)

try:
    from operator import isSequenceType as _is_sequence
except ImportError:
    def _is_sequence(x):
        return (hasattr(x, '__len__') or hasattr(x, '__next__')
                or hasattr(x, 'next'))


class dok_matrix(spmatrix, IndexMixin, dict):
    """
    Dictionary Of Keys based sparse matrix.

    This is an efficient structure for constructing sparse
    matrices incrementally.

    This can be instantiated in several ways:
        dok_matrix(D)
            with a dense matrix, D

        dok_matrix(S)
            with a sparse matrix, S

        dok_matrix((M,N), [dtype])
            create the matrix with initial shape (M,N)
            dtype is optional, defaulting to dtype='d'

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of nonzero elements

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Allows for efficient O(1) access of individual elements.
    Duplicates are not allowed.
    Can be efficiently converted to a coo_matrix once constructed.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import dok_matrix
    >>> S = dok_matrix((5, 5), dtype=np.float32)
    >>> for i in range(5):
    ...     for j in range(5):
    ...         S[i, j] = i + j    # Update element

    """
    format = 'dok'

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        dict.__init__(self)
        spmatrix.__init__(self)

        self.dtype = getdtype(dtype, default=float)
        if isinstance(arg1, tuple) and isshape(arg1):  # (M,N)
            M, N = arg1
            self._shape = check_shape((M, N))
        elif isspmatrix(arg1):  # Sparse ctor
            if isspmatrix_dok(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.todok()

            if dtype is not None:
                arg1 = arg1.astype(dtype)

            dict.update(self, arg1)
            self._shape = check_shape(arg1.shape)
            self.dtype = arg1.dtype
        else:  # Dense ctor
            try:
                arg1 = np.asarray(arg1)
            except:
                raise TypeError('Invalid input format.')

            if len(arg1.shape) != 2:
                raise TypeError('Expected rank <=2 dense array or matrix.')

            from .coo import coo_matrix
            d = coo_matrix(arg1, dtype=dtype).todok()
            dict.update(self, d)
            self._shape = check_shape(arg1.shape)
            self.dtype = d.dtype

    def update(self, val):
        # Prevent direct usage of update
        raise NotImplementedError("Direct modification to dok_matrix element "
                                  "is not allowed.")

    def _update(self, data):
        """An update method for dict data defined for direct access to
        `dok_matrix` data. Main purpose is to be used for effcient conversion
        from other spmatrix classes. Has no checking if `data` is valid."""
        return dict.update(self, data)

    def set_shape(self, shape):
        new_matrix = self.reshape(shape, copy=False).asformat(self.format)
        self.__dict__ = new_matrix.__dict__
        dict.clear(self)
        dict.update(self, new_matrix)

    shape = property(fget=spmatrix.get_shape, fset=set_shape)

    def getnnz(self, axis=None):
        if axis is not None:
            raise NotImplementedError("getnnz over an axis is not implemented "
                                      "for DOK format.")
        return dict.__len__(self)

    def count_nonzero(self):
        return sum(x != 0 for x in itervalues(self))

    getnnz.__doc__ = spmatrix.getnnz.__doc__
    count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__

    def __len__(self):
        return dict.__len__(self)

    def get(self, key, default=0.):
        """This overrides the dict.get method, providing type checking
        but otherwise equivalent functionality.
        """
        try:
            i, j = key
            assert isintlike(i) and isintlike(j)
        except (AssertionError, TypeError, ValueError):
            raise IndexError('Index must be a pair of integers.')
        if (i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]):
            raise IndexError('Index out of bounds.')
        return dict.get(self, key, default)

    def __getitem__(self, index):
        """If key=(i, j) is a pair of integers, return the corresponding
        element.  If either i or j is a slice or sequence, return a new sparse
        matrix with just these elements.
        """
        zero = self.dtype.type(0)
        i, j = self._unpack_index(index)

        i_intlike = isintlike(i)
        j_intlike = isintlike(j)

        if i_intlike and j_intlike:
            i = int(i)
            j = int(j)
            if i < 0:
                i += self.shape[0]
            if i < 0 or i >= self.shape[0]:
                raise IndexError('Index out of bounds.')
            if j < 0:
                j += self.shape[1]
            if j < 0 or j >= self.shape[1]:
                raise IndexError('Index out of bounds.')
            return dict.get(self, (i,j), zero)
        elif ((i_intlike or isinstance(i, slice)) and
              (j_intlike or isinstance(j, slice))):
            # Fast path for slicing very sparse matrices
            i_slice = slice(i, i+1) if i_intlike else i
            j_slice = slice(j, j+1) if j_intlike else j
            i_indices = i_slice.indices(self.shape[0])
            j_indices = j_slice.indices(self.shape[1])
            i_seq = xrange(*i_indices)
            j_seq = xrange(*j_indices)
            newshape = (len(i_seq), len(j_seq))
            newsize = _prod(newshape)

            if len(self) < 2*newsize and newsize != 0:
                # Switch to the fast path only when advantageous
                # (count the iterations in the loops, adjust for complexity)
                #
                # We also don't handle newsize == 0 here (if
                # i/j_intlike, it can mean index i or j was out of
                # bounds)
                return self._getitem_ranges(i_indices, j_indices, newshape)

        i, j = self._index_to_arrays(i, j)

        if i.size == 0:
            return dok_matrix(i.shape, dtype=self.dtype)

        min_i = i.min()
        if min_i < -self.shape[0] or i.max() >= self.shape[0]:
            raise IndexError('Index (%d) out of range -%d to %d.' %
                             (i.min(), self.shape[0], self.shape[0]-1))
        if min_i < 0:
            i = i.copy()
            i[i < 0] += self.shape[0]

        min_j = j.min()
        if min_j < -self.shape[1] or j.max() >= self.shape[1]:
            raise IndexError('Index (%d) out of range -%d to %d.' %
                             (j.min(), self.shape[1], self.shape[1]-1))
        if min_j < 0:
            j = j.copy()
            j[j < 0] += self.shape[1]

        newdok = dok_matrix(i.shape, dtype=self.dtype)

        for key in itertools.product(xrange(i.shape[0]), xrange(i.shape[1])):
            v = dict.get(self, (i[key], j[key]), zero)
            if v:
                dict.__setitem__(newdok, key, v)

        return newdok

    def _getitem_ranges(self, i_indices, j_indices, shape):
        # performance golf: we don't want Numpy scalars here, they are slow
        i_start, i_stop, i_stride = map(int, i_indices)
        j_start, j_stop, j_stride = map(int, j_indices)

        newdok = dok_matrix(shape, dtype=self.dtype)

        for (ii, jj) in iterkeys(self):
            # ditto for numpy scalars
            ii = int(ii)
            jj = int(jj)
            a, ra = divmod(ii - i_start, i_stride)
            if a < 0 or a >= shape[0] or ra != 0:
                continue
            b, rb = divmod(jj - j_start, j_stride)
            if b < 0 or b >= shape[1] or rb != 0:
                continue
            dict.__setitem__(newdok, (a, b),
                             dict.__getitem__(self, (ii, jj)))
        return newdok

    def __setitem__(self, index, x):
        if isinstance(index, tuple) and len(index) == 2:
            # Integer index fast path
            i, j = index
            if (isintlike(i) and isintlike(j) and 0 <= i < self.shape[0]
                    and 0 <= j < self.shape[1]):
                v = np.asarray(x, dtype=self.dtype)
                if v.ndim == 0 and v != 0:
                    dict.__setitem__(self, (int(i), int(j)), v[()])
                    return

        i, j = self._unpack_index(index)
        i, j = self._index_to_arrays(i, j)

        if isspmatrix(x):
            x = x.toarray()

        # Make x and i into the same shape
        x = np.asarray(x, dtype=self.dtype)
        x, _ = np.broadcast_arrays(x, i)

        if x.shape != i.shape:
            raise ValueError("Shape mismatch in assignment.")

        if np.size(x) == 0:
            return

        min_i = i.min()
        if min_i < -self.shape[0] or i.max() >= self.shape[0]:
            raise IndexError('Index (%d) out of range -%d to %d.' %
                             (i.min(), self.shape[0], self.shape[0]-1))
        if min_i < 0:
            i = i.copy()
            i[i < 0] += self.shape[0]

        min_j = j.min()
        if min_j < -self.shape[1] or j.max() >= self.shape[1]:
            raise IndexError('Index (%d) out of range -%d to %d.' %
                             (j.min(), self.shape[1], self.shape[1]-1))
        if min_j < 0:
            j = j.copy()
            j[j < 0] += self.shape[1]

        dict.update(self, izip(izip(i.flat, j.flat), x.flat))

        if 0 in x:
            zeroes = x == 0
            for key in izip(i[zeroes].flat, j[zeroes].flat):
                if dict.__getitem__(self, key) == 0:
                    # may have been superseded by later update
                    del self[key]

    def __add__(self, other):
        if isscalarlike(other):
            res_dtype = upcast_scalar(self.dtype, other)
            new = dok_matrix(self.shape, dtype=res_dtype)
            # Add this scalar to every element.
            M, N = self.shape
            for key in itertools.product(xrange(M), xrange(N)):
                aij = dict.get(self, (key), 0) + other
                if aij:
                    new[key] = aij
            # new.dtype.char = self.dtype.char
        elif isspmatrix_dok(other):
            if other.shape != self.shape:
                raise ValueError("Matrix dimensions are not equal.")
            # We could alternatively set the dimensions to the largest of
            # the two matrices to be summed.  Would this be a good idea?
            res_dtype = upcast(self.dtype, other.dtype)
            new = dok_matrix(self.shape, dtype=res_dtype)
            dict.update(new, self)
            with np.errstate(over='ignore'):
                dict.update(new,
                           ((k, new[k] + other[k]) for k in iterkeys(other)))
        elif isspmatrix(other):
            csc = self.tocsc()
            new = csc + other
        elif isdense(other):
            new = self.todense() + other
        else:
            return NotImplemented
        return new

    def __radd__(self, other):
        if isscalarlike(other):
            new = dok_matrix(self.shape, dtype=self.dtype)
            M, N = self.shape
            for key in itertools.product(xrange(M), xrange(N)):
                aij = dict.get(self, (key), 0) + other
                if aij:
                    new[key] = aij
        elif isspmatrix_dok(other):
            if other.shape != self.shape:
                raise ValueError("Matrix dimensions are not equal.")
            new = dok_matrix(self.shape, dtype=self.dtype)
            dict.update(new, self)
            dict.update(new,
                       ((k, self[k] + other[k]) for k in iterkeys(other)))
        elif isspmatrix(other):
            csc = self.tocsc()
            new = csc + other
        elif isdense(other):
            new = other + self.todense()
        else:
            return NotImplemented
        return new

    def __neg__(self):
        if self.dtype.kind == 'b':
            raise NotImplementedError('Negating a sparse boolean matrix is not'
                                      ' supported.')
        new = dok_matrix(self.shape, dtype=self.dtype)
        dict.update(new, ((k, -self[k]) for k in iterkeys(self)))
        return new

    def _mul_scalar(self, other):
        res_dtype = upcast_scalar(self.dtype, other)
        # Multiply this scalar by every element.
        new = dok_matrix(self.shape, dtype=res_dtype)
        dict.update(new, ((k, v * other) for k, v in iteritems(self)))
        return new

    def _mul_vector(self, other):
        # matrix * vector
        result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype))
        for (i, j), v in iteritems(self):
            result[i] += v * other[j]
        return result

    def _mul_multivector(self, other):
        # matrix * multivector
        result_shape = (self.shape[0], other.shape[1])
        result_dtype = upcast(self.dtype, other.dtype)
        result = np.zeros(result_shape, dtype=result_dtype)
        for (i, j), v in iteritems(self):
            result[i,:] += v * other[j,:]
        return result

    def __imul__(self, other):
        if isscalarlike(other):
            dict.update(self, ((k, v * other) for k, v in iteritems(self)))
            return self
        return NotImplemented

    def __truediv__(self, other):
        if isscalarlike(other):
            res_dtype = upcast_scalar(self.dtype, other)
            new = dok_matrix(self.shape, dtype=res_dtype)
            dict.update(new, ((k, v / other) for k, v in iteritems(self)))
            return new
        return self.tocsr() / other

    def __itruediv__(self, other):
        if isscalarlike(other):
            dict.update(self, ((k, v / other) for k, v in iteritems(self)))
            return self
        return NotImplemented

    def __reduce__(self):
        # this approach is necessary because __setstate__ is called after
        # __setitem__ upon unpickling and since __init__ is not called there
        # is no shape attribute hence it is not possible to unpickle it.
        return dict.__reduce__(self)

    # What should len(sparse) return? For consistency with dense matrices,
    # perhaps it should be the number of rows?  For now it returns the number
    # of non-zeros.

    def transpose(self, axes=None, copy=False):
        if axes is not None:
            raise ValueError("Sparse matrices do not support "
                             "an 'axes' parameter because swapping "
                             "dimensions is the only logical permutation.")

        M, N = self.shape
        new = dok_matrix((N, M), dtype=self.dtype, copy=copy)
        dict.update(new, (((right, left), val)
                          for (left, right), val in iteritems(self)))
        return new

    transpose.__doc__ = spmatrix.transpose.__doc__

    def conjtransp(self):
        """Return the conjugate transpose."""
        M, N = self.shape
        new = dok_matrix((N, M), dtype=self.dtype)
        dict.update(new, (((right, left), np.conj(val))
                          for (left, right), val in iteritems(self)))
        return new

    def copy(self):
        new = dok_matrix(self.shape, dtype=self.dtype)
        dict.update(new, self)
        return new

    copy.__doc__ = spmatrix.copy.__doc__

    def getrow(self, i):
        """Returns the i-th row as a (1 x n) DOK matrix."""
        new = dok_matrix((1, self.shape[1]), dtype=self.dtype)
        dict.update(new, (((0, j), self[i, j]) for j in xrange(self.shape[1])))
        return new

    def getcol(self, j):
        """Returns the j-th column as a (m x 1) DOK matrix."""
        new = dok_matrix((self.shape[0], 1), dtype=self.dtype)
        dict.update(new, (((i, 0), self[i, j]) for i in xrange(self.shape[0])))
        return new

    def tocoo(self, copy=False):
        from .coo import coo_matrix
        if self.nnz == 0:
            return coo_matrix(self.shape, dtype=self.dtype)

        idx_dtype = get_index_dtype(maxval=max(self.shape))
        data = np.fromiter(itervalues(self), dtype=self.dtype, count=self.nnz)
        row = np.fromiter((i for i, _ in iterkeys(self)), dtype=idx_dtype, count=self.nnz)
        col = np.fromiter((j for _, j in iterkeys(self)), dtype=idx_dtype, count=self.nnz)
        A = coo_matrix((data, (row, col)), shape=self.shape, dtype=self.dtype)
        A.has_canonical_format = True
        return A

    tocoo.__doc__ = spmatrix.tocoo.__doc__

    def todok(self, copy=False):
        if copy:
            return self.copy()
        return self

    todok.__doc__ = spmatrix.todok.__doc__

    def tocsc(self, copy=False):
        return self.tocoo(copy=False).tocsc(copy=copy)

    tocsc.__doc__ = spmatrix.tocsc.__doc__

    def resize(self, *shape):
        shape = check_shape(shape)
        newM, newN = shape
        M, N = self.shape
        if newM < M or newN < N:
            # Remove all elements outside new dimensions
            for (i, j) in list(iterkeys(self)):
                if i >= newM or j >= newN:
                    del self[i, j]
        self._shape = shape

    resize.__doc__ = spmatrix.resize.__doc__


def isspmatrix_dok(x):
    """Is x of dok_matrix type?

    Parameters
    ----------
    x
        object to check for being a dok matrix

    Returns
    -------
    bool
        True if x is a dok matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import dok_matrix, isspmatrix_dok
    >>> isspmatrix_dok(dok_matrix([[5]]))
    True

    >>> from scipy.sparse import dok_matrix, csr_matrix, isspmatrix_dok
    >>> isspmatrix_dok(csr_matrix([[5]]))
    False
    """
    return isinstance(x, dok_matrix)


def _prod(x):
    """Product of a list of numbers; ~40x faster vs np.prod for Python tuples"""
    if len(x) == 0:
        return 1
    return functools.reduce(operator.mul, x)