File: extract.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (171 lines) | stat: -rw-r--r-- 4,713 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""Functions to extract parts of sparse matrices
"""

from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['find', 'tril', 'triu']


from .coo import coo_matrix


def find(A):
    """Return the indices and values of the nonzero elements of a matrix

    Parameters
    ----------
    A : dense or sparse matrix
        Matrix whose nonzero elements are desired.

    Returns
    -------
    (I,J,V) : tuple of arrays
        I,J, and V contain the row indices, column indices, and values
        of the nonzero matrix entries.


    Examples
    --------
    >>> from scipy.sparse import csr_matrix, find
    >>> A = csr_matrix([[7.0, 8.0, 0],[0, 0, 9.0]])
    >>> find(A)
    (array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([ 7.,  8.,  9.]))

    """

    A = coo_matrix(A, copy=True)
    A.sum_duplicates()
    # remove explicit zeros
    nz_mask = A.data != 0
    return A.row[nz_mask], A.col[nz_mask], A.data[nz_mask]


def tril(A, k=0, format=None):
    """Return the lower triangular portion of a matrix in sparse format

    Returns the elements on or below the k-th diagonal of the matrix A.
        - k = 0 corresponds to the main diagonal
        - k > 0 is above the main diagonal
        - k < 0 is below the main diagonal

    Parameters
    ----------
    A : dense or sparse matrix
        Matrix whose lower trianglar portion is desired.
    k : integer : optional
        The top-most diagonal of the lower triangle.
    format : string
        Sparse format of the result, e.g. format="csr", etc.

    Returns
    -------
    L : sparse matrix
        Lower triangular portion of A in sparse format.

    See Also
    --------
    triu : upper triangle in sparse format

    Examples
    --------
    >>> from scipy.sparse import csr_matrix, tril
    >>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
    ...                dtype='int32')
    >>> A.toarray()
    array([[1, 2, 0, 0, 3],
           [4, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> tril(A).toarray()
    array([[1, 0, 0, 0, 0],
           [4, 5, 0, 0, 0],
           [0, 0, 8, 0, 0]])
    >>> tril(A).nnz
    4
    >>> tril(A, k=1).toarray()
    array([[1, 2, 0, 0, 0],
           [4, 5, 0, 0, 0],
           [0, 0, 8, 9, 0]])
    >>> tril(A, k=-1).toarray()
    array([[0, 0, 0, 0, 0],
           [4, 0, 0, 0, 0],
           [0, 0, 0, 0, 0]])
    >>> tril(A, format='csc')
    <3x5 sparse matrix of type '<class 'numpy.int32'>'
            with 4 stored elements in Compressed Sparse Column format>

    """

    # convert to COOrdinate format where things are easy
    A = coo_matrix(A, copy=False)
    mask = A.row + k >= A.col
    return _masked_coo(A, mask).asformat(format)


def triu(A, k=0, format=None):
    """Return the upper triangular portion of a matrix in sparse format

    Returns the elements on or above the k-th diagonal of the matrix A.
        - k = 0 corresponds to the main diagonal
        - k > 0 is above the main diagonal
        - k < 0 is below the main diagonal

    Parameters
    ----------
    A : dense or sparse matrix
        Matrix whose upper trianglar portion is desired.
    k : integer : optional
        The bottom-most diagonal of the upper triangle.
    format : string
        Sparse format of the result, e.g. format="csr", etc.

    Returns
    -------
    L : sparse matrix
        Upper triangular portion of A in sparse format.

    See Also
    --------
    tril : lower triangle in sparse format

    Examples
    --------
    >>> from scipy.sparse import csr_matrix, triu
    >>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
    ...                dtype='int32')
    >>> A.toarray()
    array([[1, 2, 0, 0, 3],
           [4, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> triu(A).toarray()
    array([[1, 2, 0, 0, 3],
           [0, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> triu(A).nnz
    8
    >>> triu(A, k=1).toarray()
    array([[0, 2, 0, 0, 3],
           [0, 0, 0, 6, 7],
           [0, 0, 0, 9, 0]])
    >>> triu(A, k=-1).toarray()
    array([[1, 2, 0, 0, 3],
           [4, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> triu(A, format='csc')
    <3x5 sparse matrix of type '<class 'numpy.int32'>'
            with 8 stored elements in Compressed Sparse Column format>

    """

    # convert to COOrdinate format where things are easy
    A = coo_matrix(A, copy=False)
    mask = A.row + k <= A.col
    return _masked_coo(A, mask).asformat(format)


def _masked_coo(A, mask):
    row = A.row[mask]
    col = A.col[mask]
    data = A.data[mask]
    return coo_matrix((data, (row, col)), shape=A.shape, dtype=A.dtype)