1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
"""Sparse matrix norms.
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.sparse import issparse
from numpy.core import Inf, sqrt, abs
__all__ = ['norm']
def _sparse_frobenius_norm(x):
if np.issubdtype(x.dtype, np.complexfloating):
sqnorm = abs(x).power(2).sum()
else:
sqnorm = x.power(2).sum()
return sqrt(sqnorm)
def norm(x, ord=None, axis=None):
"""
Norm of a sparse matrix
This function is able to return one of seven different matrix norms,
depending on the value of the ``ord`` parameter.
Parameters
----------
x : a sparse matrix
Input sparse matrix.
ord : {non-zero int, inf, -inf, 'fro'}, optional
Order of the norm (see table under ``Notes``). inf means numpy's
`inf` object.
axis : {int, 2-tuple of ints, None}, optional
If `axis` is an integer, it specifies the axis of `x` along which to
compute the vector norms. If `axis` is a 2-tuple, it specifies the
axes that hold 2-D matrices, and the matrix norms of these matrices
are computed. If `axis` is None then either a vector norm (when `x`
is 1-D) or a matrix norm (when `x` is 2-D) is returned.
Returns
-------
n : float or ndarray
Notes
-----
Some of the ord are not implemented because some associated functions like,
_multi_svd_norm, are not yet available for sparse matrix.
This docstring is modified based on numpy.linalg.norm.
https://github.com/numpy/numpy/blob/master/numpy/linalg/linalg.py
The following norms can be calculated:
===== ============================
ord norm for sparse matrices
===== ============================
None Frobenius norm
'fro' Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
0 abs(x).sum(axis=axis)
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 Not implemented
-2 Not implemented
other Not implemented
===== ============================
The Frobenius norm is given by [1]_:
:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
References
----------
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples
--------
>>> from scipy.sparse import *
>>> import numpy as np
>>> from scipy.sparse.linalg import norm
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],
[-1, 0, 1],
[ 2, 3, 4]])
>>> b = csr_matrix(b)
>>> norm(b)
7.745966692414834
>>> norm(b, 'fro')
7.745966692414834
>>> norm(b, np.inf)
9
>>> norm(b, -np.inf)
2
>>> norm(b, 1)
7
>>> norm(b, -1)
6
"""
if not issparse(x):
raise TypeError("input is not sparse. use numpy.linalg.norm")
# Check the default case first and handle it immediately.
if axis is None and ord in (None, 'fro', 'f'):
return _sparse_frobenius_norm(x)
# Some norms require functions that are not implemented for all types.
x = x.tocsr()
if axis is None:
axis = (0, 1)
elif not isinstance(axis, tuple):
msg = "'axis' must be None, an integer or a tuple of integers"
try:
int_axis = int(axis)
except TypeError:
raise TypeError(msg)
if axis != int_axis:
raise TypeError(msg)
axis = (int_axis,)
nd = 2
if len(axis) == 2:
row_axis, col_axis = axis
if not (-nd <= row_axis < nd and -nd <= col_axis < nd):
raise ValueError('Invalid axis %r for an array with shape %r' %
(axis, x.shape))
if row_axis % nd == col_axis % nd:
raise ValueError('Duplicate axes given.')
if ord == 2:
raise NotImplementedError
#return _multi_svd_norm(x, row_axis, col_axis, amax)
elif ord == -2:
raise NotImplementedError
#return _multi_svd_norm(x, row_axis, col_axis, amin)
elif ord == 1:
return abs(x).sum(axis=row_axis).max(axis=col_axis)[0,0]
elif ord == Inf:
return abs(x).sum(axis=col_axis).max(axis=row_axis)[0,0]
elif ord == -1:
return abs(x).sum(axis=row_axis).min(axis=col_axis)[0,0]
elif ord == -Inf:
return abs(x).sum(axis=col_axis).min(axis=row_axis)[0,0]
elif ord in (None, 'f', 'fro'):
# The axis order does not matter for this norm.
return _sparse_frobenius_norm(x)
else:
raise ValueError("Invalid norm order for matrices.")
elif len(axis) == 1:
a, = axis
if not (-nd <= a < nd):
raise ValueError('Invalid axis %r for an array with shape %r' %
(axis, x.shape))
if ord == Inf:
M = abs(x).max(axis=a)
elif ord == -Inf:
M = abs(x).min(axis=a)
elif ord == 0:
# Zero norm
M = (x != 0).sum(axis=a)
elif ord == 1:
# special case for speedup
M = abs(x).sum(axis=a)
elif ord in (2, None):
M = sqrt(abs(x).power(2).sum(axis=a))
else:
try:
ord + 1
except TypeError:
raise ValueError('Invalid norm order for vectors.')
M = np.power(abs(x).power(ord).sum(axis=a), 1 / ord)
return M.A.ravel()
else:
raise ValueError("Improper number of dimensions to norm.")
|