1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file
* \brief Finds a row permutation so that the matrix has large entries on the diagonal
*
* <pre>
* -- SuperLU routine (version 4.0) --
* Lawrence Berkeley National Laboratory.
* June 30, 2009
* </pre>
*/
#include "slu_cdefs.h"
extern int_t mc64id_(int_t*);
extern int_t mc64ad_(int_t*, int_t*, int_t*, int_t [], int_t [], double [],
int_t*, int_t [], int_t*, int_t[], int_t*, double [],
int_t [], int_t []);
/*! \brief
*
* <pre>
* Purpose
* =======
*
* CLDPERM finds a row permutation so that the matrix has large
* entries on the diagonal.
*
* Arguments
* =========
*
* job (input) int
* Control the action. Possible values for JOB are:
* = 1 : Compute a row permutation of the matrix so that the
* permuted matrix has as many entries on its diagonal as
* possible. The values on the diagonal are of arbitrary size.
* HSL subroutine MC21A/AD is used for this.
* = 2 : Compute a row permutation of the matrix so that the smallest
* value on the diagonal of the permuted matrix is maximized.
* = 3 : Compute a row permutation of the matrix so that the smallest
* value on the diagonal of the permuted matrix is maximized.
* The algorithm differs from the one used for JOB = 2 and may
* have quite a different performance.
* = 4 : Compute a row permutation of the matrix so that the sum
* of the diagonal entries of the permuted matrix is maximized.
* = 5 : Compute a row permutation of the matrix so that the product
* of the diagonal entries of the permuted matrix is maximized
* and vectors to scale the matrix so that the nonzero diagonal
* entries of the permuted matrix are one in absolute value and
* all the off-diagonal entries are less than or equal to one in
* absolute value.
* Restriction: 1 <= JOB <= 5.
*
* n (input) int
* The order of the matrix.
*
* nnz (input) int
* The number of nonzeros in the matrix.
*
* adjncy (input) int*, of size nnz
* The adjacency structure of the matrix, which contains the row
* indices of the nonzeros.
*
* colptr (input) int*, of size n+1
* The pointers to the beginning of each column in ADJNCY.
*
* nzval (input) complex*, of size nnz
* The nonzero values of the matrix. nzval[k] is the value of
* the entry corresponding to adjncy[k].
* It is not used if job = 1.
*
* perm (output) int*, of size n
* The permutation vector. perm[i] = j means row i in the
* original matrix is in row j of the permuted matrix.
*
* u (output) double*, of size n
* If job = 5, the natural logarithms of the row scaling factors.
*
* v (output) double*, of size n
* If job = 5, the natural logarithms of the column scaling factors.
* The scaled matrix B has entries b_ij = a_ij * exp(u_i + v_j).
* </pre>
*/
int
cldperm(int_t job, int_t n, int_t nnz, int_t colptr[], int_t adjncy[],
complex nzval[], int_t *perm, float u[], float v[])
{
int_t i, liw, ldw, num;
int_t *iw, icntl[10], info[10];
double *dw;
double *nzval_d = (double *) SUPERLU_MALLOC(nnz * sizeof(double));
#if ( DEBUGlevel>=1 )
CHECK_MALLOC("Enter cldperm()");
#endif
liw = 5*n;
if ( job == 3 ) liw = 10*n + nnz;
if ( !(iw = intMalloc(liw)) ) ABORT("Malloc fails for iw[]");
ldw = 3*n + nnz;
if ( !(dw = (double*) SUPERLU_MALLOC(ldw * sizeof(double))) )
ABORT("Malloc fails for dw[]");
/* Increment one to get 1-based indexing. */
for (i = 0; i <= n; ++i) ++colptr[i];
for (i = 0; i < nnz; ++i) ++adjncy[i];
#if ( DEBUGlevel>=2 )
printf("LDPERM(): n %d, nnz %d\n", n, nnz);
slu_PrintInt10("colptr", n+1, colptr);
slu_PrintInt10("adjncy", nnz, adjncy);
#endif
/*
* NOTE:
* =====
*
* MC64AD assumes that column permutation vector is defined as:
* perm(i) = j means column i of permuted A is in column j of original A.
*
* Since a symmetric permutation preserves the diagonal entries. Then
* by the following relation:
* P'(A*P')P = P'A
* we can apply inverse(perm) to rows of A to get large diagonal entries.
* But, since 'perm' defined in MC64AD happens to be the reverse of
* SuperLU's definition of permutation vector, therefore, it is already
* an inverse for our purpose. We will thus use it directly.
*
*/
mc64id_(icntl);
#if 0
/* Suppress error and warning messages. */
icntl[0] = -1;
icntl[1] = -1;
#endif
for (i = 0; i < nnz; ++i) nzval_d[i] = c_abs1(&nzval[i]);
mc64ad_(&job, &n, &nnz, colptr, adjncy, nzval_d, &num, perm,
&liw, iw, &ldw, dw, icntl, info);
#if ( DEBUGlevel>=2 )
slu_PrintInt10("perm", n, perm);
printf(".. After MC64AD info %d\tsize of matching %d\n", info[0], num);
#endif
if ( info[0] == 1 ) { /* Structurally singular */
printf(".. The last %d permutations:\n", n-num);
slu_PrintInt10("perm", n-num, &perm[num]);
}
/* Restore to 0-based indexing. */
for (i = 0; i <= n; ++i) --colptr[i];
for (i = 0; i < nnz; ++i) --adjncy[i];
for (i = 0; i < n; ++i) --perm[i];
if ( job == 5 )
for (i = 0; i < n; ++i) {
u[i] = dw[i];
v[i] = dw[n+i];
}
SUPERLU_FREE(iw);
SUPERLU_FREE(dw);
SUPERLU_FREE(nzval_d);
#if ( DEBUGlevel>=1 )
CHECK_MALLOC("Exit cldperm()");
#endif
return info[0];
}
|