1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file cmyblas2.c
* \brief Level 2 Blas operations
*
* <pre>
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
* </pre>
* Purpose:
* Level 2 BLAS operations: solves and matvec, written in C.
* Note:
* This is only used when the system lacks an efficient BLAS library.
* </pre>
*/
/*
* File name: cmyblas2.c
*/
#include "slu_scomplex.h"
/*! \brief Solves a dense UNIT lower triangular system
*
* The unit lower
* triangular matrix is stored in a 2D array M(1:nrow,1:ncol).
* The solution will be returned in the rhs vector.
*/
void clsolve ( int ldm, int ncol, complex *M, complex *rhs )
{
int k;
complex x0, x1, x2, x3, temp;
complex *M0;
complex *Mki0, *Mki1, *Mki2, *Mki3;
register int firstcol = 0;
M0 = &M[0];
while ( firstcol < ncol - 3 ) { /* Do 4 columns */
Mki0 = M0 + 1;
Mki1 = Mki0 + ldm + 1;
Mki2 = Mki1 + ldm + 1;
Mki3 = Mki2 + ldm + 1;
x0 = rhs[firstcol];
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x1, &rhs[firstcol+1], &temp);
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x2, &rhs[firstcol+2], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&x2, &x2, &temp);
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x3, &rhs[firstcol+3], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&x3, &x3, &temp);
cc_mult(&temp, &x2, Mki2); Mki2++;
c_sub(&x3, &x3, &temp);
rhs[++firstcol] = x1;
rhs[++firstcol] = x2;
rhs[++firstcol] = x3;
++firstcol;
for (k = firstcol; k < ncol; k++) {
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x2, Mki2); Mki2++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x3, Mki3); Mki3++;
c_sub(&rhs[k], &rhs[k], &temp);
}
M0 += 4 * ldm + 4;
}
if ( firstcol < ncol - 1 ) { /* Do 2 columns */
Mki0 = M0 + 1;
Mki1 = Mki0 + ldm + 1;
x0 = rhs[firstcol];
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&x1, &rhs[firstcol+1], &temp);
rhs[++firstcol] = x1;
++firstcol;
for (k = firstcol; k < ncol; k++) {
cc_mult(&temp, &x0, Mki0); Mki0++;
c_sub(&rhs[k], &rhs[k], &temp);
cc_mult(&temp, &x1, Mki1); Mki1++;
c_sub(&rhs[k], &rhs[k], &temp);
}
}
}
/*! \brief Solves a dense upper triangular system.
*
* The upper triangular matrix is
* stored in a 2-dim array M(1:ldm,1:ncol). The solution will be returned
* in the rhs vector.
*/
void
cusolve ( ldm, ncol, M, rhs )
int ldm; /* in */
int ncol; /* in */
complex *M; /* in */
complex *rhs; /* modified */
{
complex xj, temp;
int jcol, j, irow;
jcol = ncol - 1;
for (j = 0; j < ncol; j++) {
c_div(&xj, &rhs[jcol], &M[jcol + jcol*ldm]); /* M(jcol, jcol) */
rhs[jcol] = xj;
for (irow = 0; irow < jcol; irow++) {
cc_mult(&temp, &xj, &M[irow+jcol*ldm]); /* M(irow, jcol) */
c_sub(&rhs[irow], &rhs[irow], &temp);
}
jcol--;
}
}
/*! \brief Performs a dense matrix-vector multiply: Mxvec = Mxvec + M * vec.
*
* The input matrix is M(1:nrow,1:ncol); The product is returned in Mxvec[].
*/
void cmatvec ( ldm, nrow, ncol, M, vec, Mxvec )
int ldm; /* in -- leading dimension of M */
int nrow; /* in */
int ncol; /* in */
complex *M; /* in */
complex *vec; /* in */
complex *Mxvec; /* in/out */
{
complex vi0, vi1, vi2, vi3;
complex *M0, temp;
complex *Mki0, *Mki1, *Mki2, *Mki3;
register int firstcol = 0;
int k;
M0 = &M[0];
while ( firstcol < ncol - 3 ) { /* Do 4 columns */
Mki0 = M0;
Mki1 = Mki0 + ldm;
Mki2 = Mki1 + ldm;
Mki3 = Mki2 + ldm;
vi0 = vec[firstcol++];
vi1 = vec[firstcol++];
vi2 = vec[firstcol++];
vi3 = vec[firstcol++];
for (k = 0; k < nrow; k++) {
cc_mult(&temp, &vi0, Mki0); Mki0++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
cc_mult(&temp, &vi1, Mki1); Mki1++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
cc_mult(&temp, &vi2, Mki2); Mki2++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
cc_mult(&temp, &vi3, Mki3); Mki3++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
}
M0 += 4 * ldm;
}
while ( firstcol < ncol ) { /* Do 1 column */
Mki0 = M0;
vi0 = vec[firstcol++];
for (k = 0; k < nrow; k++) {
cc_mult(&temp, &vi0, Mki0); Mki0++;
c_add(&Mxvec[k], &Mxvec[k], &temp);
}
M0 += ldm;
}
}
|