1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file get_perm_c.c
* \brief Matrix permutation operations
*
* <pre>
* -- SuperLU routine (version 3.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* August 1, 2008
* </pre>
*/
#include "slu_ddefs.h"
#include "colamd.h"
extern int genmmd_(int *, int *, int *, int *, int *, int *, int *,
int *, int *, int *, int *, int *);
void
get_colamd(
const int m, /* number of rows in matrix A. */
const int n, /* number of columns in matrix A. */
const int nnz,/* number of nonzeros in matrix A. */
int *colptr, /* column pointer of size n+1 for matrix A. */
int *rowind, /* row indices of size nz for matrix A. */
int *perm_c /* out - the column permutation vector. */
)
{
int Alen, *A, i, info, *p;
double knobs[COLAMD_KNOBS];
int stats[COLAMD_STATS];
Alen = colamd_recommended(nnz, m, n);
colamd_set_defaults(knobs);
if (!(A = (int *) SUPERLU_MALLOC(Alen * sizeof(int))) )
ABORT("Malloc fails for A[]");
if (!(p = (int *) SUPERLU_MALLOC((n+1) * sizeof(int))) )
ABORT("Malloc fails for p[]");
for (i = 0; i <= n; ++i) p[i] = colptr[i];
for (i = 0; i < nnz; ++i) A[i] = rowind[i];
info = colamd(m, n, Alen, A, p, knobs, stats);
if ( info == FALSE ) ABORT("COLAMD failed");
for (i = 0; i < n; ++i) perm_c[p[i]] = i;
SUPERLU_FREE(A);
SUPERLU_FREE(p);
}
/*! \brief
*
* <pre>
* Purpose
* =======
*
* Form the structure of A'*A. A is an m-by-n matrix in column oriented
* format represented by (colptr, rowind). The output A'*A is in column
* oriented format (symmetrically, also row oriented), represented by
* (ata_colptr, ata_rowind).
*
* This routine is modified from GETATA routine by Tim Davis.
* The complexity of this algorithm is: SUM_{i=1,m} r(i)^2,
* i.e., the sum of the square of the row counts.
*
* Questions
* =========
* o Do I need to withhold the *dense* rows?
* o How do I know the number of nonzeros in A'*A?
* </pre>
*/
void
getata(
const int m, /* number of rows in matrix A. */
const int n, /* number of columns in matrix A. */
const int nz, /* number of nonzeros in matrix A */
int *colptr, /* column pointer of size n+1 for matrix A. */
int *rowind, /* row indices of size nz for matrix A. */
int *atanz, /* out - on exit, returns the actual number of
nonzeros in matrix A'*A. */
int **ata_colptr, /* out - size n+1 */
int **ata_rowind /* out - size *atanz */
)
{
register int i, j, k, col, num_nz, ti, trow;
int *marker, *b_colptr, *b_rowind;
int *t_colptr, *t_rowind; /* a column oriented form of T = A' */
if ( !(marker = (int*) SUPERLU_MALLOC((SUPERLU_MAX(m,n)+1)*sizeof(int))) )
ABORT("SUPERLU_MALLOC fails for marker[]");
if ( !(t_colptr = (int*) SUPERLU_MALLOC((m+1) * sizeof(int))) )
ABORT("SUPERLU_MALLOC t_colptr[]");
if ( !(t_rowind = (int*) SUPERLU_MALLOC(nz * sizeof(int))) )
ABORT("SUPERLU_MALLOC fails for t_rowind[]");
/* Get counts of each column of T, and set up column pointers */
for (i = 0; i < m; ++i) marker[i] = 0;
for (j = 0; j < n; ++j) {
for (i = colptr[j]; i < colptr[j+1]; ++i)
++marker[rowind[i]];
}
t_colptr[0] = 0;
for (i = 0; i < m; ++i) {
t_colptr[i+1] = t_colptr[i] + marker[i];
marker[i] = t_colptr[i];
}
/* Transpose the matrix from A to T */
for (j = 0; j < n; ++j)
for (i = colptr[j]; i < colptr[j+1]; ++i) {
col = rowind[i];
t_rowind[marker[col]] = j;
++marker[col];
}
/* ----------------------------------------------------------------
compute B = T * A, where column j of B is:
Struct (B_*j) = UNION ( Struct (T_*k) )
A_kj != 0
do not include the diagonal entry
( Partition A as: A = (A_*1, ..., A_*n)
Then B = T * A = (T * A_*1, ..., T * A_*n), where
T * A_*j = (T_*1, ..., T_*m) * A_*j. )
---------------------------------------------------------------- */
/* Zero the diagonal flag */
for (i = 0; i < n; ++i) marker[i] = -1;
/* First pass determines number of nonzeros in B */
num_nz = 0;
for (j = 0; j < n; ++j) {
/* Flag the diagonal so it's not included in the B matrix */
marker[j] = j;
for (i = colptr[j]; i < colptr[j+1]; ++i) {
/* A_kj is nonzero, add pattern of column T_*k to B_*j */
k = rowind[i];
for (ti = t_colptr[k]; ti < t_colptr[k+1]; ++ti) {
trow = t_rowind[ti];
if ( marker[trow] != j ) {
marker[trow] = j;
num_nz++;
}
}
}
}
*atanz = num_nz;
/* Allocate storage for A'*A */
if ( !(*ata_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) )
ABORT("SUPERLU_MALLOC fails for ata_colptr[]");
if ( *atanz ) {
if ( !(*ata_rowind = (int*) SUPERLU_MALLOC( *atanz * sizeof(int)) ) )
ABORT("SUPERLU_MALLOC fails for ata_rowind[]");
}
b_colptr = *ata_colptr; /* aliasing */
b_rowind = *ata_rowind;
/* Zero the diagonal flag */
for (i = 0; i < n; ++i) marker[i] = -1;
/* Compute each column of B, one at a time */
num_nz = 0;
for (j = 0; j < n; ++j) {
b_colptr[j] = num_nz;
/* Flag the diagonal so it's not included in the B matrix */
marker[j] = j;
for (i = colptr[j]; i < colptr[j+1]; ++i) {
/* A_kj is nonzero, add pattern of column T_*k to B_*j */
k = rowind[i];
for (ti = t_colptr[k]; ti < t_colptr[k+1]; ++ti) {
trow = t_rowind[ti];
if ( marker[trow] != j ) {
marker[trow] = j;
b_rowind[num_nz++] = trow;
}
}
}
}
b_colptr[n] = num_nz;
SUPERLU_FREE(marker);
SUPERLU_FREE(t_colptr);
SUPERLU_FREE(t_rowind);
}
/*! \brief
*
* <pre>
* Purpose
* =======
*
* Form the structure of A'+A. A is an n-by-n matrix in column oriented
* format represented by (colptr, rowind). The output A'+A is in column
* oriented format (symmetrically, also row oriented), represented by
* (b_colptr, b_rowind).
* </pre>
*/
void
at_plus_a(
const int n, /* number of columns in matrix A. */
const int nz, /* number of nonzeros in matrix A */
int *colptr, /* column pointer of size n+1 for matrix A. */
int *rowind, /* row indices of size nz for matrix A. */
int *bnz, /* out - on exit, returns the actual number of
nonzeros in matrix A'*A. */
int **b_colptr, /* out - size n+1 */
int **b_rowind /* out - size *bnz */
)
{
register int i, j, k, col, num_nz;
int *t_colptr, *t_rowind; /* a column oriented form of T = A' */
int *marker;
if ( !(marker = (int*) SUPERLU_MALLOC( n * sizeof(int)) ) )
ABORT("SUPERLU_MALLOC fails for marker[]");
if ( !(t_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) )
ABORT("SUPERLU_MALLOC fails for t_colptr[]");
if ( !(t_rowind = (int*) SUPERLU_MALLOC( nz * sizeof(int)) ) )
ABORT("SUPERLU_MALLOC fails t_rowind[]");
/* Get counts of each column of T, and set up column pointers */
for (i = 0; i < n; ++i) marker[i] = 0;
for (j = 0; j < n; ++j) {
for (i = colptr[j]; i < colptr[j+1]; ++i)
++marker[rowind[i]];
}
t_colptr[0] = 0;
for (i = 0; i < n; ++i) {
t_colptr[i+1] = t_colptr[i] + marker[i];
marker[i] = t_colptr[i];
}
/* Transpose the matrix from A to T */
for (j = 0; j < n; ++j)
for (i = colptr[j]; i < colptr[j+1]; ++i) {
col = rowind[i];
t_rowind[marker[col]] = j;
++marker[col];
}
/* ----------------------------------------------------------------
compute B = A + T, where column j of B is:
Struct (B_*j) = Struct (A_*k) UNION Struct (T_*k)
do not include the diagonal entry
---------------------------------------------------------------- */
/* Zero the diagonal flag */
for (i = 0; i < n; ++i) marker[i] = -1;
/* First pass determines number of nonzeros in B */
num_nz = 0;
for (j = 0; j < n; ++j) {
/* Flag the diagonal so it's not included in the B matrix */
marker[j] = j;
/* Add pattern of column A_*k to B_*j */
for (i = colptr[j]; i < colptr[j+1]; ++i) {
k = rowind[i];
if ( marker[k] != j ) {
marker[k] = j;
++num_nz;
}
}
/* Add pattern of column T_*k to B_*j */
for (i = t_colptr[j]; i < t_colptr[j+1]; ++i) {
k = t_rowind[i];
if ( marker[k] != j ) {
marker[k] = j;
++num_nz;
}
}
}
*bnz = num_nz;
/* Allocate storage for A+A' */
if ( !(*b_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) )
ABORT("SUPERLU_MALLOC fails for b_colptr[]");
if ( *bnz) {
if ( !(*b_rowind = (int*) SUPERLU_MALLOC( *bnz * sizeof(int)) ) )
ABORT("SUPERLU_MALLOC fails for b_rowind[]");
}
/* Zero the diagonal flag */
for (i = 0; i < n; ++i) marker[i] = -1;
/* Compute each column of B, one at a time */
num_nz = 0;
for (j = 0; j < n; ++j) {
(*b_colptr)[j] = num_nz;
/* Flag the diagonal so it's not included in the B matrix */
marker[j] = j;
/* Add pattern of column A_*k to B_*j */
for (i = colptr[j]; i < colptr[j+1]; ++i) {
k = rowind[i];
if ( marker[k] != j ) {
marker[k] = j;
(*b_rowind)[num_nz++] = k;
}
}
/* Add pattern of column T_*k to B_*j */
for (i = t_colptr[j]; i < t_colptr[j+1]; ++i) {
k = t_rowind[i];
if ( marker[k] != j ) {
marker[k] = j;
(*b_rowind)[num_nz++] = k;
}
}
}
(*b_colptr)[n] = num_nz;
SUPERLU_FREE(marker);
SUPERLU_FREE(t_colptr);
SUPERLU_FREE(t_rowind);
}
/*! \brief
*
* <pre>
* Purpose
* =======
*
* GET_PERM_C obtains a permutation matrix Pc, by applying the multiple
* minimum degree ordering code by Joseph Liu to matrix A'*A or A+A'.
* or using approximate minimum degree column ordering by Davis et. al.
* The LU factorization of A*Pc tends to have less fill than the LU
* factorization of A.
*
* Arguments
* =========
*
* ispec (input) int
* Specifies the type of column ordering to reduce fill:
* = 1: minimum degree on the structure of A^T * A
* = 2: minimum degree on the structure of A^T + A
* = 3: approximate minimum degree for unsymmetric matrices
* If ispec == 0, the natural ordering (i.e., Pc = I) is returned.
*
* A (input) SuperMatrix*
* Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
* of the linear equations is A->nrow. Currently, the type of A
* can be: Stype = NC; Dtype = _D; Mtype = GE. In the future,
* more general A can be handled.
*
* perm_c (output) int*
* Column permutation vector of size A->ncol, which defines the
* permutation matrix Pc; perm_c[i] = j means column i of A is
* in position j in A*Pc.
* </pre>
*/
void
get_perm_c(int ispec, SuperMatrix *A, int *perm_c)
{
NCformat *Astore = A->Store;
int m, n, bnz = 0, *b_colptr, i;
int delta, maxint, nofsub, *invp;
int *b_rowind, *dhead, *qsize, *llist, *marker;
double t, SuperLU_timer_();
m = A->nrow;
n = A->ncol;
t = SuperLU_timer_();
switch ( ispec ) {
case (NATURAL): /* Natural ordering */
for (i = 0; i < n; ++i) perm_c[i] = i;
#if ( PRNTlevel>=1 )
printf("Use natural column ordering.\n");
#endif
return;
case (MMD_ATA): /* Minimum degree ordering on A'*A */
getata(m, n, Astore->nnz, Astore->colptr, Astore->rowind,
&bnz, &b_colptr, &b_rowind);
#if ( PRNTlevel>=1 )
printf("Use minimum degree ordering on A'*A.\n");
#endif
t = SuperLU_timer_() - t;
/*printf("Form A'*A time = %8.3f\n", t);*/
break;
case (MMD_AT_PLUS_A): /* Minimum degree ordering on A'+A */
if ( m != n ) ABORT("Matrix is not square");
at_plus_a(n, Astore->nnz, Astore->colptr, Astore->rowind,
&bnz, &b_colptr, &b_rowind);
#if ( PRNTlevel>=1 )
printf("Use minimum degree ordering on A'+A.\n");
#endif
t = SuperLU_timer_() - t;
/*printf("Form A'+A time = %8.3f\n", t);*/
break;
case (COLAMD): /* Approximate minimum degree column ordering. */
get_colamd(m, n, Astore->nnz, Astore->colptr, Astore->rowind, perm_c);
#if ( PRNTlevel>=1 )
printf(".. Use approximate minimum degree column ordering.\n");
#endif
return;
default:
ABORT("Invalid ISPEC");
}
if ( bnz != 0 ) {
t = SuperLU_timer_();
/* Initialize and allocate storage for GENMMD. */
delta = 0; /* DELTA is a parameter to allow the choice of nodes
whose degree <= min-degree + DELTA. */
maxint = 2147483647; /* 2**31 - 1 */
invp = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int));
if ( !invp ) ABORT("SUPERLU_MALLOC fails for invp.");
dhead = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int));
if ( !dhead ) ABORT("SUPERLU_MALLOC fails for dhead.");
qsize = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int));
if ( !qsize ) ABORT("SUPERLU_MALLOC fails for qsize.");
llist = (int *) SUPERLU_MALLOC(n*sizeof(int));
if ( !llist ) ABORT("SUPERLU_MALLOC fails for llist.");
marker = (int *) SUPERLU_MALLOC(n*sizeof(int));
if ( !marker ) ABORT("SUPERLU_MALLOC fails for marker.");
/* Transform adjacency list into 1-based indexing required by GENMMD.*/
for (i = 0; i <= n; ++i) ++b_colptr[i];
for (i = 0; i < bnz; ++i) ++b_rowind[i];
genmmd_(&n, b_colptr, b_rowind, perm_c, invp, &delta, dhead,
qsize, llist, marker, &maxint, &nofsub);
/* Transform perm_c into 0-based indexing. */
for (i = 0; i < n; ++i) --perm_c[i];
SUPERLU_FREE(invp);
SUPERLU_FREE(dhead);
SUPERLU_FREE(qsize);
SUPERLU_FREE(llist);
SUPERLU_FREE(marker);
SUPERLU_FREE(b_rowind);
t = SuperLU_timer_() - t;
/* printf("call GENMMD time = %8.3f\n", t);*/
} else { /* Empty adjacency structure */
for (i = 0; i < n; ++i) perm_c[i] = i;
}
SUPERLU_FREE(b_colptr);
}
|