1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file ilu_heap_relax_snode.c
* \brief Identify the initial relaxed supernodes
*
* <pre>
* -- SuperLU routine (version 4.0) --
* Lawrence Berkeley National Laboratory
* June 1, 2009
* </pre>
*/
#include "slu_ddefs.h"
/*! \brief
*
* <pre>
* Purpose
* =======
* ilu_heap_relax_snode() - Identify the initial relaxed supernodes,
* assuming that the matrix has been reordered according to the postorder
* of the etree.
* </pre>
*/
void
ilu_heap_relax_snode (
const int n,
int *et, /* column elimination tree */
const int relax_columns, /* max no of columns allowed in a
relaxed snode */
int *descendants, /* no of descendants of each node
in the etree */
int *relax_end, /* last column in a supernode
* if j-th column starts a relaxed
* supernode, relax_end[j] represents
* the last column of this supernode */
int *relax_fsupc /* first column in a supernode
* relax_fsupc[j] represents the first
* column of j-th supernode */
)
{
register int i, j, k, l, f, parent;
register int snode_start; /* beginning of a snode */
int *et_save, *post, *inv_post, *iwork;
int nsuper_et = 0, nsuper_et_post = 0;
/* The etree may not be postordered, but is heap ordered. */
iwork = (int*) intMalloc(3*n+2);
if ( !iwork ) ABORT("SUPERLU_MALLOC fails for iwork[]");
inv_post = iwork + n+1;
et_save = inv_post + n+1;
/* Post order etree */
post = (int *) TreePostorder(n, et);
for (i = 0; i < n+1; ++i) inv_post[post[i]] = i;
/* Renumber etree in postorder */
for (i = 0; i < n; ++i) {
iwork[post[i]] = post[et[i]];
et_save[i] = et[i]; /* Save the original etree */
}
for (i = 0; i < n; ++i) et[i] = iwork[i];
/* Compute the number of descendants of each node in the etree */
ifill (relax_end, n, EMPTY);
ifill (relax_fsupc, n, EMPTY);
for (j = 0; j < n; j++) descendants[j] = 0;
for (j = 0; j < n; j++) {
parent = et[j];
if ( parent != n ) /* not the dummy root */
descendants[parent] += descendants[j] + 1;
}
/* Identify the relaxed supernodes by postorder traversal of the etree. */
for ( f = j = 0; j < n; ) {
parent = et[j];
snode_start = j;
while ( parent != n && descendants[parent] < relax_columns ) {
j = parent;
parent = et[j];
}
/* Found a supernode in postordered etree; j is the last column. */
++nsuper_et_post;
k = n;
for (i = snode_start; i <= j; ++i)
k = SUPERLU_MIN(k, inv_post[i]);
l = inv_post[j];
if ( (l - k) == (j - snode_start) ) {
/* It's also a supernode in the original etree */
relax_end[k] = l; /* Last column is recorded */
relax_fsupc[f++] = k;
++nsuper_et;
} else {
for (i = snode_start; i <= j; ++i) {
l = inv_post[i];
if ( descendants[i] == 0 ) {
relax_end[l] = l;
relax_fsupc[f++] = l;
++nsuper_et;
}
}
}
j++;
/* Search for a new leaf */
while ( descendants[j] != 0 && j < n ) j++;
}
#if ( PRNTlevel>=1 )
printf(".. heap_snode_relax:\n"
"\tNo of relaxed snodes in postordered etree:\t%d\n"
"\tNo of relaxed snodes in original etree:\t%d\n",
nsuper_et_post, nsuper_et);
#endif
/* Recover the original etree */
for (i = 0; i < n; ++i) et[i] = et_save[i];
SUPERLU_FREE(post);
SUPERLU_FREE(iwork);
}
|