1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file sgsequ.c
* \brief Computes row and column scalings
*
* <pre>
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Modified from LAPACK routine SGEEQU
* </pre>
*/
/*
* File name: sgsequ.c
* History: Modified from LAPACK routine SGEEQU
*/
#include <math.h>
#include "slu_sdefs.h"
/*! \brief
*
* <pre>
* Purpose
* =======
*
* SGSEQU computes row and column scalings intended to equilibrate an
* M-by-N sparse matrix A and reduce its condition number. R returns the row
* scale factors and C the column scale factors, chosen to try to make
* the largest element in each row and column of the matrix B with
* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
*
* R(i) and C(j) are restricted to be between SMLNUM = smallest safe
* number and BIGNUM = largest safe number. Use of these scaling
* factors is not guaranteed to reduce the condition number of A but
* works well in practice.
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* A (input) SuperMatrix*
* The matrix of dimension (A->nrow, A->ncol) whose equilibration
* factors are to be computed. The type of A can be:
* Stype = SLU_NC; Dtype = SLU_S; Mtype = SLU_GE.
*
* R (output) float*, size A->nrow
* If INFO = 0 or INFO > M, R contains the row scale factors
* for A.
*
* C (output) float*, size A->ncol
* If INFO = 0, C contains the column scale factors for A.
*
* ROWCND (output) float*
* If INFO = 0 or INFO > M, ROWCND contains the ratio of the
* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
* AMAX is neither too large nor too small, it is not worth
* scaling by R.
*
* COLCND (output) float*
* If INFO = 0, COLCND contains the ratio of the smallest
* C(i) to the largest C(i). If COLCND >= 0.1, it is not
* worth scaling by C.
*
* AMAX (output) float*
* Absolute value of largest matrix element. If AMAX is very
* close to overflow or very close to underflow, the matrix
* should be scaled.
*
* INFO (output) int*
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, and i is
* <= A->nrow: the i-th row of A is exactly zero
* > A->ncol: the (i-M)-th column of A is exactly zero
*
* =====================================================================
* </pre>
*/
void
sgsequ(SuperMatrix *A, float *r, float *c, float *rowcnd,
float *colcnd, float *amax, int *info)
{
/* Local variables */
NCformat *Astore;
float *Aval;
int i, j, irow;
float rcmin, rcmax;
float bignum, smlnum;
extern float smach(char *);
/* Test the input parameters. */
*info = 0;
if ( A->nrow < 0 || A->ncol < 0 ||
A->Stype != SLU_NC || A->Dtype != SLU_S || A->Mtype != SLU_GE )
*info = -1;
if (*info != 0) {
i = -(*info);
input_error("sgsequ", &i);
return;
}
/* Quick return if possible */
if ( A->nrow == 0 || A->ncol == 0 ) {
*rowcnd = 1.;
*colcnd = 1.;
*amax = 0.;
return;
}
Astore = A->Store;
Aval = Astore->nzval;
/* Get machine constants. */
smlnum = smach("S"); /* slamch_("S"); */
bignum = 1. / smlnum;
/* Compute row scale factors. */
for (i = 0; i < A->nrow; ++i) r[i] = 0.;
/* Find the maximum element in each row. */
for (j = 0; j < A->ncol; ++j)
for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
irow = Astore->rowind[i];
r[irow] = SUPERLU_MAX( r[irow], fabs(Aval[i]) );
}
/* Find the maximum and minimum scale factors. */
rcmin = bignum;
rcmax = 0.;
for (i = 0; i < A->nrow; ++i) {
rcmax = SUPERLU_MAX(rcmax, r[i]);
rcmin = SUPERLU_MIN(rcmin, r[i]);
}
*amax = rcmax;
if (rcmin == 0.) {
/* Find the first zero scale factor and return an error code. */
for (i = 0; i < A->nrow; ++i)
if (r[i] == 0.) {
*info = i + 1;
return;
}
} else {
/* Invert the scale factors. */
for (i = 0; i < A->nrow; ++i)
r[i] = 1. / SUPERLU_MIN( SUPERLU_MAX( r[i], smlnum ), bignum );
/* Compute ROWCND = min(R(I)) / max(R(I)) */
*rowcnd = SUPERLU_MAX( rcmin, smlnum ) / SUPERLU_MIN( rcmax, bignum );
}
/* Compute column scale factors */
for (j = 0; j < A->ncol; ++j) c[j] = 0.;
/* Find the maximum element in each column, assuming the row
scalings computed above. */
for (j = 0; j < A->ncol; ++j)
for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
irow = Astore->rowind[i];
c[j] = SUPERLU_MAX( c[j], fabs(Aval[i]) * r[irow] );
}
/* Find the maximum and minimum scale factors. */
rcmin = bignum;
rcmax = 0.;
for (j = 0; j < A->ncol; ++j) {
rcmax = SUPERLU_MAX(rcmax, c[j]);
rcmin = SUPERLU_MIN(rcmin, c[j]);
}
if (rcmin == 0.) {
/* Find the first zero scale factor and return an error code. */
for (j = 0; j < A->ncol; ++j)
if ( c[j] == 0. ) {
*info = A->nrow + j + 1;
return;
}
} else {
/* Invert the scale factors. */
for (j = 0; j < A->ncol; ++j)
c[j] = 1. / SUPERLU_MIN( SUPERLU_MAX( c[j], smlnum ), bignum);
/* Compute COLCND = min(C(J)) / max(C(J)) */
*colcnd = SUPERLU_MAX( rcmin, smlnum ) / SUPERLU_MIN( rcmax, bignum );
}
return;
} /* sgsequ */
|