File: sgsisx.c

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (738 lines) | stat: -rw-r--r-- 27,869 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required 
approvals from U.S. Dept. of Energy) 

All rights reserved. 

The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/

/*! @file sgsisx.c
 * \brief Computes an approximate solutions of linear equations A*X=B or A'*X=B
 *
 * <pre>
 * -- SuperLU routine (version 4.2) --
 * Lawrence Berkeley National Laboratory.
 * November, 2010
 * August, 2011
 * </pre>
 */
#include "slu_sdefs.h"

/*! \brief
 *
 * <pre>
 * Purpose
 * =======
 *
 * SGSISX computes an approximate solutions of linear equations
 * A*X=B or A'*X=B, using the ILU factorization from sgsitrf().
 * An estimation of the condition number is provided. 
 * The routine performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = SLU_NC):
 *  
 *	1.1. If options->Equil = YES or options->RowPerm = LargeDiag, scaling
 *	     factors are computed to equilibrate the system:
 *	     options->Trans = NOTRANS:
 *		 diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
 *	     options->Trans = TRANS:
 *		 (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *	     options->Trans = CONJ:
 *		 (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *	     Whether or not the system will be equilibrated depends on the
 *	     scaling of the matrix A, but if equilibration is used, A is
 *	     overwritten by diag(R)*A*diag(C) and B by diag(R)*B
 *	     (if options->Trans=NOTRANS) or diag(C)*B (if options->Trans
 *	     = TRANS or CONJ).
 *
 *	1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
 *	     matrix that usually preserves sparsity.
 *	     For more details of this step, see sp_preorder.c.
 *
 *	1.3. If options->Fact != FACTORED, the LU decomposition is used to
 *	     factor the matrix A (after equilibration if options->Equil = YES)
 *	     as Pr*A*Pc = L*U, with Pr determined by partial pivoting.
 *
 *	1.4. Compute the reciprocal pivot growth factor.
 *
 *	1.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *	     routine fills a small number on the diagonal entry, that is
 *		U(i,i) = ||A(:,i)||_oo * options->ILU_FillTol ** (1 - i / n),
 *	     and info will be increased by 1. The factored form of A is used
 *	     to estimate the condition number of the preconditioner. If the
 *	     reciprocal of the condition number is less than machine precision,
 *	     info = A->ncol+1 is returned as a warning, but the routine still
 *	     goes on to solve for X.
 *
 *	1.6. The system of equations is solved for X using the factored form
 *	     of A.
 *
 *	1.7. options->IterRefine is not used
 *
 *	1.8. If equilibration was used, the matrix X is premultiplied by
 *	     diag(C) (if options->Trans = NOTRANS) or diag(R)
 *	     (if options->Trans = TRANS or CONJ) so that it solves the
 *	     original system before equilibration.
 *
 *	1.9. options for ILU only
 *	     1) If options->RowPerm = LargeDiag, MC64 is used to scale and
 *		permute the matrix to an I-matrix, that is Pr*Dr*A*Dc has
 *		entries of modulus 1 on the diagonal and off-diagonal entries
 *		of modulus at most 1. If MC64 fails, dgsequ() is used to
 *		equilibrate the system.
 *              ( Default: LargeDiag )
 *	     2) options->ILU_DropTol = tau is the threshold for dropping.
 *		For L, it is used directly (for the whole row in a supernode);
 *		For U, ||A(:,i)||_oo * tau is used as the threshold
 *	        for the	i-th column.
 *		If a secondary dropping rule is required, tau will
 *	        also be used to compute the second threshold.
 *              ( Default: 1e-4 )
 *	     3) options->ILU_FillFactor = gamma, used as the initial guess
 *		of memory growth.
 *		If a secondary dropping rule is required, it will also
 *              be used as an upper bound of the memory.
 *              ( Default: 10 )
 *	     4) options->ILU_DropRule specifies the dropping rule.
 *		Option	      Meaning
 *		======	      ===========
 *		DROP_BASIC:   Basic dropping rule, supernodal based ILUTP(tau).
 *		DROP_PROWS:   Supernodal based ILUTP(p,tau), p = gamma*nnz(A)/n.
 *		DROP_COLUMN:  Variant of ILUTP(p,tau), for j-th column,
 *			      p = gamma * nnz(A(:,j)).
 *		DROP_AREA:    Variation of ILUTP, for j-th column, use
 *			      nnz(F(:,1:j)) / nnz(A(:,1:j)) to control memory.
 *		DROP_DYNAMIC: Modify the threshold tau during factorizaion:
 *			      If nnz(L(:,1:j)) / nnz(A(:,1:j)) > gamma
 *				  tau_L(j) := MIN(tau_0, tau_L(j-1) * 2);
 *			      Otherwise
 *				  tau_L(j) := MAX(tau_0, tau_L(j-1) / 2);
 *			      tau_U(j) uses the similar rule.
 *			      NOTE: the thresholds used by L and U are separate.
 *		DROP_INTERP:  Compute the second dropping threshold by
 *			      interpolation instead of sorting (default).
 *			      In this case, the actual fill ratio is not
 *			      guaranteed smaller than gamma.
 *		DROP_PROWS, DROP_COLUMN and DROP_AREA are mutually exclusive.
 *		( Default: DROP_BASIC | DROP_AREA )
 *	     5) options->ILU_Norm is the criterion of measuring the magnitude
 *		of a row in a supernode of L. ( Default is INF_NORM )
 *		options->ILU_Norm	RowSize(x[1:n])
 *		=================	===============
 *		ONE_NORM		||x||_1 / n
 *		TWO_NORM		||x||_2 / sqrt(n)
 *		INF_NORM		max{|x[i]|}
 *	     6) options->ILU_MILU specifies the type of MILU's variation.
 *		= SILU: do not perform Modified ILU;
 *		= SMILU_1 (not recommended):
 *		    U(i,i) := U(i,i) + sum(dropped entries);
 *		= SMILU_2:
 *		    U(i,i) := U(i,i) + SGN(U(i,i)) * sum(dropped entries);
 *		= SMILU_3:
 *		    U(i,i) := U(i,i) + SGN(U(i,i)) * sum(|dropped entries|);
 *		NOTE: Even SMILU_1 does not preserve the column sum because of
 *		late dropping.
 *              ( Default: SILU )
 *	     7) options->ILU_FillTol is used as the perturbation when
 *		encountering zero pivots. If some U(i,i) = 0, so that U is
 *		exactly singular, then
 *		   U(i,i) := ||A(:,i)|| * options->ILU_FillTol ** (1 - i / n).
 *              ( Default: 1e-2 )
 *
 *   2. If A is stored row-wise (A->Stype = SLU_NR), apply the above algorithm
 *	to the transpose of A:
 *
 *	2.1. If options->Equil = YES or options->RowPerm = LargeDiag, scaling
 *	     factors are computed to equilibrate the system:
 *	     options->Trans = NOTRANS:
 *		 diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
 *	     options->Trans = TRANS:
 *		 (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *	     options->Trans = CONJ:
 *		 (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *	     Whether or not the system will be equilibrated depends on the
 *	     scaling of the matrix A, but if equilibration is used, A' is
 *	     overwritten by diag(R)*A'*diag(C) and B by diag(R)*B
 *	     (if trans='N') or diag(C)*B (if trans = 'T' or 'C').
 *
 *	2.2. Permute columns of transpose(A) (rows of A),
 *	     forming transpose(A)*Pc, where Pc is a permutation matrix that
 *	     usually preserves sparsity.
 *	     For more details of this step, see sp_preorder.c.
 *
 *	2.3. If options->Fact != FACTORED, the LU decomposition is used to
 *	     factor the transpose(A) (after equilibration if
 *	     options->Fact = YES) as Pr*transpose(A)*Pc = L*U with the
 *	     permutation Pr determined by partial pivoting.
 *
 *	2.4. Compute the reciprocal pivot growth factor.
 *
 *	2.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *	     routine fills a small number on the diagonal entry, that is
 *		 U(i,i) = ||A(:,i)||_oo * options->ILU_FillTol ** (1 - i / n).
 *	     And info will be increased by 1. The factored form of A is used
 *	     to estimate the condition number of the preconditioner. If the
 *	     reciprocal of the condition number is less than machine precision,
 *	     info = A->ncol+1 is returned as a warning, but the routine still
 *	     goes on to solve for X.
 *
 *	2.6. The system of equations is solved for X using the factored form
 *	     of transpose(A).
 *
 *	2.7. If options->IterRefine is not used.
 *
 *	2.8. If equilibration was used, the matrix X is premultiplied by
 *	     diag(C) (if options->Trans = NOTRANS) or diag(R)
 *	     (if options->Trans = TRANS or CONJ) so that it solves the
 *	     original system before equilibration.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * options (input) superlu_options_t*
 *	   The structure defines the input parameters to control
 *	   how the LU decomposition will be performed and how the
 *	   system will be solved.
 *
 * A	   (input/output) SuperMatrix*
 *	   Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *	   of the linear equations is A->nrow. Currently, the type of A can be:
 *	   Stype = SLU_NC or SLU_NR, Dtype = SLU_S, Mtype = SLU_GE.
 *	   In the future, more general A may be handled.
 *
 *	   On entry, If options->Fact = FACTORED and equed is not 'N',
 *	   then A must have been equilibrated by the scaling factors in
 *	   R and/or C.
 *	   On exit, A is not modified
 *         if options->Equil = NO, or
 *         if options->Equil = YES but equed = 'N' on exit, or
 *         if options->RowPerm = NO.
 *
 *	   Otherwise, if options->Equil = YES and equed is not 'N',
 *	   A is scaled as follows:
 *	   If A->Stype = SLU_NC:
 *	     equed = 'R':  A := diag(R) * A
 *	     equed = 'C':  A := A * diag(C)
 *	     equed = 'B':  A := diag(R) * A * diag(C).
 *	   If A->Stype = SLU_NR:
 *	     equed = 'R':  transpose(A) := diag(R) * transpose(A)
 *	     equed = 'C':  transpose(A) := transpose(A) * diag(C)
 *	     equed = 'B':  transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 *         If options->RowPerm = LargeDiag, MC64 is used to scale and permute
 *            the matrix to an I-matrix, that is A is modified as follows:
 *            P*Dr*A*Dc has entries of modulus 1 on the diagonal and 
 *            off-diagonal entries of modulus at most 1. P is a permutation
 *            obtained from MC64.
 *            If MC64 fails, sgsequ() is used to equilibrate the system,
 *            and A is scaled as above, but no permutation is involved.
 *            On exit, A is restored to the orginal row numbering, so
 *            Dr*A*Dc is returned.
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = SLU_NC, Column permutation vector of size A->ncol,
 *	   which defines the permutation matrix Pc; perm_c[i] = j means
 *	   column i of A is in position j in A*Pc.
 *	   On exit, perm_c may be overwritten by the product of the input
 *	   perm_c and a permutation that postorders the elimination tree
 *	   of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *	   is already in postorder.
 *
 *	   If A->Stype = SLU_NR, column permutation vector of size A->nrow,
 *	   which describes permutation of columns of transpose(A) 
 *	   (rows of A) as described above.
 *
 * perm_r  (input/output) int*
 *	   If A->Stype = SLU_NC, row permutation vector of size A->nrow, 
 *	   which defines the permutation matrix Pr, and is determined
 *	   by MC64 first then followed by partial pivoting.
 *         perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 *	   If A->Stype = SLU_NR, permutation vector of size A->ncol, which
 *	   determines permutation of rows of transpose(A)
 *	   (columns of A) as described above.
 *
 *	   If options->Fact = SamePattern_SameRowPerm, the pivoting routine
 *	   will try to use the input perm_r, unless a certain threshold
 *	   criterion is violated. In that case, perm_r is overwritten by a
 *	   new permutation determined by partial pivoting or diagonal
 *	   threshold pivoting.
 *	   Otherwise, perm_r is output argument.
 *
 * etree   (input/output) int*,  dimension (A->ncol)
 *	   Elimination tree of Pc'*A'*A*Pc.
 *	   If options->Fact != FACTORED and options->Fact != DOFACT,
 *	   etree is an input argument, otherwise it is an output argument.
 *	   Note: etree is a vector of parent pointers for a forest whose
 *	   vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *
 * equed   (input/output) char*
 *	   Specifies the form of equilibration that was done.
 *	   = 'N': No equilibration.
 *	   = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *	   = 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
 *	   = 'B': Both row and column equilibration, i.e., A was replaced 
 *		  by diag(R)*A*diag(C).
 *	   If options->Fact = FACTORED, equed is an input argument,
 *	   otherwise it is an output argument.
 *
 * R	   (input/output) float*, dimension (A->nrow)
 *	   The row scale factors for A or transpose(A).
 *	   If equed = 'R' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *	       (if A->Stype = SLU_NR) is multiplied on the left by diag(R).
 *	   If equed = 'N' or 'C', R is not accessed.
 *	   If options->Fact = FACTORED, R is an input argument,
 *	       otherwise, R is output.
 *	   If options->Fact = FACTORED and equed = 'R' or 'B', each element
 *	       of R must be positive.
 *
 * C	   (input/output) float*, dimension (A->ncol)
 *	   The column scale factors for A or transpose(A).
 *	   If equed = 'C' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *	       (if A->Stype = SLU_NR) is multiplied on the right by diag(C).
 *	   If equed = 'N' or 'R', C is not accessed.
 *	   If options->Fact = FACTORED, C is an input argument,
 *	       otherwise, C is output.
 *	   If options->Fact = FACTORED and equed = 'C' or 'B', each element
 *	       of C must be positive.
 *
 * L	   (output) SuperMatrix*
 *	   The factor L from the factorization
 *	       Pr*A*Pc=L*U		(if A->Stype SLU_= NC) or
 *	       Pr*transpose(A)*Pc=L*U	(if A->Stype = SLU_NR).
 *	   Uses compressed row subscripts storage for supernodes, i.e.,
 *	   L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
 *
 * U	   (output) SuperMatrix*
 *	   The factor U from the factorization
 *	       Pr*A*Pc=L*U		(if A->Stype = SLU_NC) or
 *	       Pr*transpose(A)*Pc=L*U	(if A->Stype = SLU_NR).
 *	   Uses column-wise storage scheme, i.e., U has types:
 *	   Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.
 *
 * work    (workspace/output) void*, size (lwork) (in bytes)
 *	   User supplied workspace, should be large enough
 *	   to hold data structures for factors L and U.
 *	   On exit, if fact is not 'F', L and U point to this array.
 *
 * lwork   (input) int
 *	   Specifies the size of work array in bytes.
 *	   = 0:  allocate space internally by system malloc;
 *	   > 0:  use user-supplied work array of length lwork in bytes,
 *		 returns error if space runs out.
 *	   = -1: the routine guesses the amount of space needed without
 *		 performing the factorization, and returns it in
 *		 mem_usage->total_needed; no other side effects.
 *
 *	   See argument 'mem_usage' for memory usage statistics.
 *
 * B	   (input/output) SuperMatrix*
 *	   B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
 *	   On entry, the right hand side matrix.
 *	   If B->ncol = 0, only LU decomposition is performed, the triangular
 *			   solve is skipped.
 *	   On exit,
 *	      if equed = 'N', B is not modified; otherwise
 *	      if A->Stype = SLU_NC:
 *		 if options->Trans = NOTRANS and equed = 'R' or 'B',
 *		    B is overwritten by diag(R)*B;
 *		 if options->Trans = TRANS or CONJ and equed = 'C' of 'B',
 *		    B is overwritten by diag(C)*B;
 *	      if A->Stype = SLU_NR:
 *		 if options->Trans = NOTRANS and equed = 'C' or 'B',
 *		    B is overwritten by diag(C)*B;
 *		 if options->Trans = TRANS or CONJ and equed = 'R' of 'B',
 *		    B is overwritten by diag(R)*B.
 *
 * X	   (output) SuperMatrix*
 *	   X has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
 *	   If info = 0 or info = A->ncol+1, X contains the solution matrix
 *	   to the original system of equations. Note that A and B are modified
 *	   on exit if equed is not 'N', and the solution to the equilibrated
 *	   system is inv(diag(C))*X if options->Trans = NOTRANS and
 *	   equed = 'C' or 'B', or inv(diag(R))*X if options->Trans = 'T' or 'C'
 *	   and equed = 'R' or 'B'.
 *
 * recip_pivot_growth (output) float*
 *	   The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
 *	   The infinity norm is used. If recip_pivot_growth is much less
 *	   than 1, the stability of the LU factorization could be poor.
 *
 * rcond   (output) float*
 *	   The estimate of the reciprocal condition number of the matrix A
 *	   after equilibration (if done). If rcond is less than the machine
 *	   precision (in particular, if rcond = 0), the matrix is singular
 *	   to working precision. This condition is indicated by a return
 *	   code of info > 0.
 *
 * mem_usage (output) mem_usage_t*
 *	   Record the memory usage statistics, consisting of following fields:
 *	   - for_lu (float)
 *	     The amount of space used in bytes for L\U data structures.
 *	   - total_needed (float)
 *	     The amount of space needed in bytes to perform factorization.
 *	   - expansions (int)
 *	     The number of memory expansions during the LU factorization.
 *
 * stat   (output) SuperLUStat_t*
 *	  Record the statistics on runtime and floating-point operation count.
 *	  See slu_util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 *	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 *	   > 0: if info = i, and i is
 *		<= A->ncol: number of zero pivots. They are replaced by small
 *		      entries due to options->ILU_FillTol.
 *		= A->ncol+1: U is nonsingular, but RCOND is less than machine
 *		      precision, meaning that the matrix is singular to
 *		      working precision. Nevertheless, the solution and
 *		      error bounds are computed because there are a number
 *		      of situations where the computed solution can be more
 *		      accurate than the value of RCOND would suggest.
 *		> A->ncol+1: number of bytes allocated when memory allocation
 *		      failure occurred, plus A->ncol.
 * </pre>
 */

void
sgsisx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, float *R, float *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X,
       float *recip_pivot_growth, float *rcond,
       GlobalLU_t *Glu, mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info)
{

    DNformat  *Bstore, *Xstore;
    float    *Bmat, *Xmat;
    int       ldb, ldx, nrhs, n;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec, mc64;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    float    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    float    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    int *perm = NULL; /* permutation returned from MC64 */

    /* External functions */
    extern float slangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    n      = B->nrow;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    mc64 = (options->RowPerm == LargeDiag);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
	colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
	smlnum = smach("Safe minimum");  /* lamch_("Safe minimum"); */
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	options->Fact != FACTORED &&
	options->Trans != NOTRANS && options->Trans != TRANS && 
	options->Trans != CONJ &&
	options->Equil != NO && options->Equil != YES)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_S || A->Mtype != SLU_GE )
	*info = -2;
    else if ( options->Fact == FACTORED &&
	     !(rowequ || colequ || strncmp(equed, "N", 1)==0) )
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_S || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
		      X->Stype != SLU_DN ||
		      X->Dtype != SLU_S || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	input_error("sgsisx", &i);
	return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact ) {
	register int i, j;
	NCformat *Astore = AA->Store;
	int nnz = Astore->nnz;
	int *colptr = Astore->colptr;
	int *rowind = Astore->rowind;
	float *nzval = (float *)Astore->nzval;

	if ( mc64 ) {
	    t0 = SuperLU_timer_();
	    if ((perm = intMalloc(n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm[]");

	    info1 = sldperm(5, n, nnz, colptr, rowind, nzval, perm, R, C);

	    if (info1 != 0) { /* MC64 fails, call sgsequ() later */
		mc64 = 0;
		SUPERLU_FREE(perm);
		perm = NULL;
	    } else {
	        if ( equil ) {
	            rowequ = colequ = 1;
		    for (i = 0; i < n; i++) {
		        R[i] = exp(R[i]);
		        C[i] = exp(C[i]);
		    }
		    /* scale the matrix */
		    for (j = 0; j < n; j++) {
		        for (i = colptr[j]; i < colptr[j + 1]; i++) {
			    nzval[i] *= R[rowind[i]] * C[j];
		        }
		    }
	            *equed = 'B';
                }

                /* permute the matrix */
		for (j = 0; j < n; j++) {
		    for (i = colptr[j]; i < colptr[j + 1]; i++) {
			/*nzval[i] *= R[rowind[i]] * C[j];*/
			rowind[i] = perm[rowind[i]];
		    }
		}
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}

	if ( !mc64 & equil ) { /* Only perform equilibration, no row perm */
	    t0 = SuperLU_timer_();
	    /* Compute row and column scalings to equilibrate the matrix A. */
	    sgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

	    if ( info1 == 0 ) {
		/* Equilibrate matrix A. */
		slaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
		rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
		colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}
    }


    if ( nofact ) {
	
	t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
	    get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	sgsitrf(options, &AC, relax, panel_size, etree, work, lwork,
                perm_c, perm_r, L, U, Glu, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;

	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}

	if ( mc64 ) { /* Fold MC64's perm[] into perm_r[]. */
	    NCformat *Astore = AA->Store;
	    int nnz = Astore->nnz, *rowind = Astore->rowind;
	    int *perm_tmp, *iperm;
	    if ((perm_tmp = intMalloc(2*n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm_tmp[]");
	    iperm = perm_tmp + n;
	    for (i = 0; i < n; ++i) perm_tmp[i] = perm_r[perm[i]];
	    for (i = 0; i < n; ++i) {
		perm_r[i] = perm_tmp[i];
		iperm[perm[i]] = i;
	    }

	    /* Restore A's original row indices. */
	    for (i = 0; i < nnz; ++i) rowind[i] = iperm[rowind[i]];

	    SUPERLU_FREE(perm); /* MC64 permutation */
	    SUPERLU_FREE(perm_tmp);
	}
    }

    if ( options->PivotGrowth ) {
	if ( *info > 0 ) return;

	/* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
	*recip_pivot_growth = sPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
	/* Estimate the reciprocal of the condition number of A. */
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = slangs(norm, AA);
	sgscon(norm, L, U, anorm, rcond, stat, &info1);
	utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) { /* Solve the system */
        float *rhs_work;

	/* Scale and permute the right-hand side if equilibration
           and permutation from MC64 were performed. */
	if ( notran ) {
	    if ( rowequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i)
		        Bmat[i + j*ldb] *= R[i];
	    }
	} else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < n; ++i) {
	            Bmat[i + j*ldb] *= C[i];
		}
	}

	/* Compute the solution matrix X. */
	for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];

	t0 = SuperLU_timer_();
	sgstrs (trant, L, U, perm_c, perm_r, X, stat, &info1);
	utime[SOLVE] = SuperLU_timer_() - t0;

	/* Transform the solution matrix X to a solution of the original
	   system. */
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i) {
                        Xmat[i + j*ldx] *= C[i];
                    }
	    }
	} else { /* transposed system */
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
              	        Xmat[i + j*ldx] *= R[i];
                    }
	    }
	}

    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
	/* The matrix is singular to working precision. */
	/* if ( *rcond < slamch_("E") && *info == 0) *info = A->ncol + 1; */
	if ( *rcond < smach("E") && *info == 0) *info = A->ncol + 1;
    }

    if ( nofact ) {
	ilu_sQuerySpace(L, U, mem_usage);
	Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}