1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file sgsitrf.c
* \brief Computes an ILU factorization of a general sparse matrix
*
* <pre>
* -- SuperLU routine (version 4.1) --
* Lawrence Berkeley National Laboratory.
* June 30, 2009
*
* </pre>
*/
#include "slu_sdefs.h"
#ifdef DEBUG
int num_drop_L;
#endif
/*! \brief
*
* <pre>
* Purpose
* =======
*
* SGSITRF computes an ILU factorization of a general sparse m-by-n
* matrix A using partial pivoting with row interchanges.
* The factorization has the form
* Pr * A = L * U
* where Pr is a row permutation matrix, L is lower triangular with unit
* diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
* triangular (upper trapezoidal if A->nrow < A->ncol).
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* options (input) superlu_options_t*
* The structure defines the input parameters to control
* how the ILU decomposition will be performed.
*
* A (input) SuperMatrix*
* Original matrix A, permuted by columns, of dimension
* (A->nrow, A->ncol). The type of A can be:
* Stype = SLU_NCP; Dtype = SLU_S; Mtype = SLU_GE.
*
* relax (input) int
* To control degree of relaxing supernodes. If the number
* of nodes (columns) in a subtree of the elimination tree is less
* than relax, this subtree is considered as one supernode,
* regardless of the row structures of those columns.
*
* panel_size (input) int
* A panel consists of at most panel_size consecutive columns.
*
* etree (input) int*, dimension (A->ncol)
* Elimination tree of A'*A.
* Note: etree is a vector of parent pointers for a forest whose
* vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
* On input, the columns of A should be permuted so that the
* etree is in a certain postorder.
*
* work (input/output) void*, size (lwork) (in bytes)
* User-supplied work space and space for the output data structures.
* Not referenced if lwork = 0;
*
* lwork (input) int
* Specifies the size of work array in bytes.
* = 0: allocate space internally by system malloc;
* > 0: use user-supplied work array of length lwork in bytes,
* returns error if space runs out.
* = -1: the routine guesses the amount of space needed without
* performing the factorization, and returns it in
* *info; no other side effects.
*
* perm_c (input) int*, dimension (A->ncol)
* Column permutation vector, which defines the
* permutation matrix Pc; perm_c[i] = j means column i of A is
* in position j in A*Pc.
* When searching for diagonal, perm_c[*] is applied to the
* row subscripts of A, so that diagonal threshold pivoting
* can find the diagonal of A, rather than that of A*Pc.
*
* perm_r (input/output) int*, dimension (A->nrow)
* Row permutation vector which defines the permutation matrix Pr,
* perm_r[i] = j means row i of A is in position j in Pr*A.
* If options->Fact = SamePattern_SameRowPerm, the pivoting routine
* will try to use the input perm_r, unless a certain threshold
* criterion is violated. In that case, perm_r is overwritten by
* a new permutation determined by partial pivoting or diagonal
* threshold pivoting.
* Otherwise, perm_r is output argument;
*
* L (output) SuperMatrix*
* The factor L from the factorization Pr*A=L*U; use compressed row
* subscripts storage for supernodes, i.e., L has type:
* Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
*
* U (output) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
* storage scheme, i.e., U has types: Stype = SLU_NC,
* Dtype = SLU_S, Mtype = SLU_TRU.
*
* Glu (input/output) GlobalLU_t *
* If options->Fact == SamePattern_SameRowPerm, it is an input;
* The matrix A will be factorized assuming that a
* factorization of a matrix with the same sparsity pattern
* and similar numerical values was performed prior to this one.
* Therefore, this factorization will reuse both row and column
* scaling factors R and C, both row and column permutation
* vectors perm_r and perm_c, and the L & U data structures
* set up from the previous factorization.
* Otherwise, it is an output.
*
* stat (output) SuperLUStat_t*
* Record the statistics on runtime and floating-point operation count.
* See slu_util.h for the definition of 'SuperLUStat_t'.
*
* info (output) int*
* = 0: successful exit
* < 0: if info = -i, the i-th argument had an illegal value
* > 0: if info = i, and i is
* <= A->ncol: number of zero pivots. They are replaced by small
* entries according to options->ILU_FillTol.
* > A->ncol: number of bytes allocated when memory allocation
* failure occurred, plus A->ncol. If lwork = -1, it is
* the estimated amount of space needed, plus A->ncol.
*
* ======================================================================
*
* Local Working Arrays:
* ======================
* m = number of rows in the matrix
* n = number of columns in the matrix
*
* marker[0:3*m-1]: marker[i] = j means that node i has been
* reached when working on column j.
* Storage: relative to original row subscripts
* NOTE: There are 4 of them:
* marker/marker1 are used for panel dfs, see (ilu_)dpanel_dfs.c;
* marker2 is used for inner-factorization, see (ilu)_dcolumn_dfs.c;
* marker_relax(has its own space) is used for relaxed supernodes.
*
* parent[0:m-1]: parent vector used during dfs
* Storage: relative to new row subscripts
*
* xplore[0:m-1]: xplore[i] gives the location of the next (dfs)
* unexplored neighbor of i in lsub[*]
*
* segrep[0:nseg-1]: contains the list of supernodal representatives
* in topological order of the dfs. A supernode representative is the
* last column of a supernode.
* The maximum size of segrep[] is n.
*
* repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a
* supernodal representative r, repfnz[r] is the location of the first
* nonzero in this segment. It is also used during the dfs: repfnz[r]>0
* indicates the supernode r has been explored.
* NOTE: There are W of them, each used for one column of a panel.
*
* panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below
* the panel diagonal. These are filled in during dpanel_dfs(), and are
* used later in the inner LU factorization within the panel.
* panel_lsub[]/dense[] pair forms the SPA data structure.
* NOTE: There are W of them.
*
* dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
* NOTE: there are W of them.
*
* tempv[0:*]: real temporary used for dense numeric kernels;
* The size of this array is defined by NUM_TEMPV() in slu_util.h.
* It is also used by the dropping routine ilu_ddrop_row().
* </pre>
*/
void
sgsitrf(superlu_options_t *options, SuperMatrix *A, int relax, int panel_size,
int *etree, void *work, int lwork, int *perm_c, int *perm_r,
SuperMatrix *L, SuperMatrix *U,
GlobalLU_t *Glu, /* persistent to facilitate multiple factorizations */
SuperLUStat_t *stat, int *info)
{
/* Local working arrays */
NCPformat *Astore;
int *iperm_r = NULL; /* inverse of perm_r; used when
options->Fact == SamePattern_SameRowPerm */
int *iperm_c; /* inverse of perm_c */
int *swap, *iswap; /* swap is used to store the row permutation
during the factorization. Initially, it is set
to iperm_c (row indeces of Pc*A*Pc').
iswap is the inverse of swap. After the
factorization, it is equal to perm_r. */
int *iwork;
float *swork;
int *segrep, *repfnz, *parent, *xplore;
int *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
int *marker, *marker_relax;
float *dense, *tempv;
int *relax_end, *relax_fsupc;
float *a;
int *asub;
int *xa_begin, *xa_end;
int *xsup, *supno;
int *xlsub, *xlusup, *xusub;
int nzlumax;
float *amax;
float drop_sum;
float alpha, omega; /* used in MILU, mimicing DRIC */
float *swork2; /* used by the second dropping rule */
/* Local scalars */
fact_t fact = options->Fact;
double diag_pivot_thresh = options->DiagPivotThresh;
double drop_tol = options->ILU_DropTol; /* tau */
double fill_ini = options->ILU_FillTol; /* tau^hat */
double gamma = options->ILU_FillFactor;
int drop_rule = options->ILU_DropRule;
milu_t milu = options->ILU_MILU;
double fill_tol;
int pivrow; /* pivotal row number in the original matrix A */
int nseg1; /* no of segments in U-column above panel row jcol */
int nseg; /* no of segments in each U-column */
register int jcol;
register int kcol; /* end column of a relaxed snode */
register int icol;
register int i, k, jj, new_next, iinfo;
int m, n, min_mn, jsupno, fsupc, nextlu, nextu;
int w_def; /* upper bound on panel width */
int usepr, iperm_r_allocated = 0;
int nnzL, nnzU;
int *panel_histo = stat->panel_histo;
flops_t *ops = stat->ops;
int last_drop;/* the last column which the dropping rules applied */
int quota;
int nnzAj; /* number of nonzeros in A(:,1:j) */
int nnzLj, nnzUj;
double tol_L = drop_tol, tol_U = drop_tol;
float zero = 0.0;
float one = 1.0;
/* Executable */
iinfo = 0;
m = A->nrow;
n = A->ncol;
min_mn = SUPERLU_MIN(m, n);
Astore = A->Store;
a = Astore->nzval;
asub = Astore->rowind;
xa_begin = Astore->colbeg;
xa_end = Astore->colend;
/* Allocate storage common to the factor routines */
*info = sLUMemInit(fact, work, lwork, m, n, Astore->nnz, panel_size,
gamma, L, U, Glu, &iwork, &swork);
if ( *info ) return;
xsup = Glu->xsup;
supno = Glu->supno;
xlsub = Glu->xlsub;
xlusup = Glu->xlusup;
xusub = Glu->xusub;
SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
&repfnz, &panel_lsub, &marker_relax, &marker);
sSetRWork(m, panel_size, swork, &dense, &tempv);
usepr = (fact == SamePattern_SameRowPerm);
if ( usepr ) {
/* Compute the inverse of perm_r */
iperm_r = (int *) intMalloc(m);
for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
iperm_r_allocated = 1;
}
iperm_c = (int *) intMalloc(n);
for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;
swap = (int *)intMalloc(n);
for (k = 0; k < n; k++) swap[k] = iperm_c[k];
iswap = (int *)intMalloc(n);
for (k = 0; k < n; k++) iswap[k] = perm_c[k];
amax = (float *) floatMalloc(panel_size);
if (drop_rule & DROP_SECONDARY)
swork2 = (float *)floatMalloc(n);
else
swork2 = NULL;
nnzAj = 0;
nnzLj = 0;
nnzUj = 0;
last_drop = SUPERLU_MAX(min_mn - 2 * sp_ienv(7), (int)(min_mn * 0.95));
alpha = pow((double)n, -1.0 / options->ILU_MILU_Dim);
/* Identify relaxed snodes */
relax_end = (int *) intMalloc(n);
relax_fsupc = (int *) intMalloc(n);
if ( options->SymmetricMode == YES )
ilu_heap_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);
else
ilu_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);
ifill (perm_r, m, EMPTY);
ifill (marker, m * NO_MARKER, EMPTY);
supno[0] = -1;
xsup[0] = xlsub[0] = xusub[0] = xlusup[0] = 0;
w_def = panel_size;
/* Mark the rows used by relaxed supernodes */
ifill (marker_relax, m, EMPTY);
i = mark_relax(m, relax_end, relax_fsupc, xa_begin, xa_end,
asub, marker_relax);
#if ( PRNTlevel >= 1)
printf("%d relaxed supernodes.\n", i);
#endif
/*
* Work on one "panel" at a time. A panel is one of the following:
* (a) a relaxed supernode at the bottom of the etree, or
* (b) panel_size contiguous columns, defined by the user
*/
for (jcol = 0; jcol < min_mn; ) {
if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
kcol = relax_end[jcol]; /* end of the relaxed snode */
panel_histo[kcol-jcol+1]++;
/* Drop small rows in the previous supernode. */
if (jcol > 0 && jcol < last_drop) {
int first = xsup[supno[jcol - 1]];
int last = jcol - 1;
int quota;
/* Compute the quota */
if (drop_rule & DROP_PROWS)
quota = gamma * Astore->nnz / m * (m - first) / m
* (last - first + 1);
else if (drop_rule & DROP_COLUMN) {
int i;
quota = 0;
for (i = first; i <= last; i++)
quota += xa_end[i] - xa_begin[i];
quota = gamma * quota * (m - first) / m;
} else if (drop_rule & DROP_AREA)
quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
- nnzLj;
else
quota = m * n;
fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) / min_mn);
/* Drop small rows */
i = ilu_sdrop_row(options, first, last, tol_L, quota, &nnzLj,
&fill_tol, Glu, tempv, swork2, 0);
/* Reset the parameters */
if (drop_rule & DROP_DYNAMIC) {
if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
< nnzLj)
tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
else
tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
}
if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
num_drop_L += i * (last - first + 1);
#endif
}
/* --------------------------------------
* Factorize the relaxed supernode(jcol:kcol)
* -------------------------------------- */
/* Determine the union of the row structure of the snode */
if ( (*info = ilu_ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
marker, Glu)) != 0 )
return;
nextu = xusub[jcol];
nextlu = xlusup[jcol];
jsupno = supno[jcol];
fsupc = xsup[jsupno];
new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
nzlumax = Glu->nzlumax;
while ( new_next > nzlumax ) {
if ((*info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu)))
return;
}
for (icol = jcol; icol <= kcol; icol++) {
xusub[icol+1] = nextu;
amax[0] = 0.0;
/* Scatter into SPA dense[*] */
for (k = xa_begin[icol]; k < xa_end[icol]; k++) {
register float tmp = fabs(a[k]);
if (tmp > amax[0]) amax[0] = tmp;
dense[asub[k]] = a[k];
}
nnzAj += xa_end[icol] - xa_begin[icol];
if (amax[0] == 0.0) {
amax[0] = fill_ini;
#if ( PRNTlevel >= 1)
printf("Column %d is entirely zero!\n", icol);
fflush(stdout);
#endif
}
/* Numeric update within the snode */
ssnode_bmod(icol, jsupno, fsupc, dense, tempv, Glu, stat);
if (usepr) pivrow = iperm_r[icol];
fill_tol = pow(fill_ini, 1.0 - (double)icol / (double)min_mn);
if ( (*info = ilu_spivotL(icol, diag_pivot_thresh, &usepr,
perm_r, iperm_c[icol], swap, iswap,
marker_relax, &pivrow,
amax[0] * fill_tol, milu, zero,
Glu, stat)) ) {
iinfo++;
marker[pivrow] = kcol;
}
}
jcol = kcol + 1;
} else { /* Work on one panel of panel_size columns */
/* Adjust panel_size so that a panel won't overlap with the next
* relaxed snode.
*/
panel_size = w_def;
for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
if ( relax_end[k] != EMPTY ) {
panel_size = k - jcol;
break;
}
if ( k == min_mn ) panel_size = min_mn - jcol;
panel_histo[panel_size]++;
/* symbolic factor on a panel of columns */
ilu_spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
dense, amax, panel_lsub, segrep, repfnz,
marker, parent, xplore, Glu);
/* numeric sup-panel updates in topological order */
spanel_bmod(m, panel_size, jcol, nseg1, dense,
tempv, segrep, repfnz, Glu, stat);
/* Sparse LU within the panel, and below panel diagonal */
for (jj = jcol; jj < jcol + panel_size; jj++) {
k = (jj - jcol) * m; /* column index for w-wide arrays */
nseg = nseg1; /* Begin after all the panel segments */
nnzAj += xa_end[jj] - xa_begin[jj];
if ((*info = ilu_scolumn_dfs(m, jj, perm_r, &nseg,
&panel_lsub[k], segrep, &repfnz[k],
marker, parent, xplore, Glu)))
return;
/* Numeric updates */
if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
tempv, &segrep[nseg1], &repfnz[k],
jcol, Glu, stat)) != 0) return;
/* Make a fill-in position if the column is entirely zero */
if (xlsub[jj + 1] == xlsub[jj]) {
register int i, row;
int nextl;
int nzlmax = Glu->nzlmax;
int *lsub = Glu->lsub;
int *marker2 = marker + 2 * m;
/* Allocate memory */
nextl = xlsub[jj] + 1;
if (nextl >= nzlmax) {
int error = sLUMemXpand(jj, nextl, LSUB, &nzlmax, Glu);
if (error) { *info = error; return; }
lsub = Glu->lsub;
}
xlsub[jj + 1]++;
assert(xlusup[jj]==xlusup[jj+1]);
xlusup[jj + 1]++;
((float *) Glu->lusup)[xlusup[jj]] = zero;
/* Choose a row index (pivrow) for fill-in */
for (i = jj; i < n; i++)
if (marker_relax[swap[i]] <= jj) break;
row = swap[i];
marker2[row] = jj;
lsub[xlsub[jj]] = row;
#ifdef DEBUG
printf("Fill col %d.\n", jj);
fflush(stdout);
#endif
}
/* Computer the quota */
if (drop_rule & DROP_PROWS)
quota = gamma * Astore->nnz / m * jj / m;
else if (drop_rule & DROP_COLUMN)
quota = gamma * (xa_end[jj] - xa_begin[jj]) *
(jj + 1) / m;
else if (drop_rule & DROP_AREA)
quota = gamma * 0.9 * nnzAj * 0.5 - nnzUj;
else
quota = m;
/* Copy the U-segments to ucol[*] and drop small entries */
if ((*info = ilu_scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
perm_r, &dense[k], drop_rule,
milu, amax[jj - jcol] * tol_U,
quota, &drop_sum, &nnzUj, Glu,
swork2)) != 0)
return;
/* Reset the dropping threshold if required */
if (drop_rule & DROP_DYNAMIC) {
if (gamma * 0.9 * nnzAj * 0.5 < nnzLj)
tol_U = SUPERLU_MIN(1.0, tol_U * 2.0);
else
tol_U = SUPERLU_MAX(drop_tol, tol_U * 0.5);
}
if (drop_sum != zero)
{
if (drop_sum > zero)
omega = SUPERLU_MIN(2.0 * (1.0 - alpha)
* amax[jj - jcol] / drop_sum, one);
else
omega = SUPERLU_MAX(2.0 * (1.0 - alpha)
* amax[jj - jcol] / drop_sum, -one);
drop_sum *= omega;
}
if (usepr) pivrow = iperm_r[jj];
fill_tol = pow(fill_ini, 1.0 - (double)jj / (double)min_mn);
if ( (*info = ilu_spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
iperm_c[jj], swap, iswap,
marker_relax, &pivrow,
amax[jj - jcol] * fill_tol, milu,
drop_sum, Glu, stat)) ) {
iinfo++;
marker[m + pivrow] = jj;
marker[2 * m + pivrow] = jj;
}
/* Reset repfnz[] for this column */
resetrep_col (nseg, segrep, &repfnz[k]);
/* Start a new supernode, drop the previous one */
if (jj > 0 && supno[jj] > supno[jj - 1] && jj < last_drop) {
int first = xsup[supno[jj - 1]];
int last = jj - 1;
int quota;
/* Compute the quota */
if (drop_rule & DROP_PROWS)
quota = gamma * Astore->nnz / m * (m - first) / m
* (last - first + 1);
else if (drop_rule & DROP_COLUMN) {
int i;
quota = 0;
for (i = first; i <= last; i++)
quota += xa_end[i] - xa_begin[i];
quota = gamma * quota * (m - first) / m;
} else if (drop_rule & DROP_AREA)
quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0)
/ m) - nnzLj;
else
quota = m * n;
fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) /
(double)min_mn);
/* Drop small rows */
i = ilu_sdrop_row(options, first, last, tol_L, quota,
&nnzLj, &fill_tol, Glu, tempv, swork2,
1);
/* Reset the parameters */
if (drop_rule & DROP_DYNAMIC) {
if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
< nnzLj)
tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
else
tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
}
if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
num_drop_L += i * (last - first + 1);
#endif
} /* if start a new supernode */
} /* for */
jcol += panel_size; /* Move to the next panel */
} /* else */
} /* for */
*info = iinfo;
if ( m > n ) {
k = 0;
for (i = 0; i < m; ++i)
if ( perm_r[i] == EMPTY ) {
perm_r[i] = n + k;
++k;
}
}
ilu_countnz(min_mn, &nnzL, &nnzU, Glu);
fixupL(min_mn, perm_r, Glu);
sLUWorkFree(iwork, swork, Glu); /* Free work space and compress storage */
if ( fact == SamePattern_SameRowPerm ) {
/* L and U structures may have changed due to possibly different
pivoting, even though the storage is available.
There could also be memory expansions, so the array locations
may have changed, */
((SCformat *)L->Store)->nnz = nnzL;
((SCformat *)L->Store)->nsuper = Glu->supno[n];
((SCformat *)L->Store)->nzval = (float *) Glu->lusup;
((SCformat *)L->Store)->nzval_colptr = Glu->xlusup;
((SCformat *)L->Store)->rowind = Glu->lsub;
((SCformat *)L->Store)->rowind_colptr = Glu->xlsub;
((NCformat *)U->Store)->nnz = nnzU;
((NCformat *)U->Store)->nzval = (float *) Glu->ucol;
((NCformat *)U->Store)->rowind = Glu->usub;
((NCformat *)U->Store)->colptr = Glu->xusub;
} else {
sCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL,
(float *) Glu->lusup, Glu->xlusup,
Glu->lsub, Glu->xlsub, Glu->supno, Glu->xsup,
SLU_SC, SLU_S, SLU_TRLU);
sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU,
(float *) Glu->ucol, Glu->usub, Glu->xusub,
SLU_NC, SLU_S, SLU_TRU);
}
ops[FACT] += ops[TRSV] + ops[GEMV];
stat->expansions = --(Glu->num_expansions);
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
SUPERLU_FREE (iperm_c);
SUPERLU_FREE (relax_end);
SUPERLU_FREE (swap);
SUPERLU_FREE (iswap);
SUPERLU_FREE (relax_fsupc);
SUPERLU_FREE (amax);
if ( swork2 ) SUPERLU_FREE (swork2);
}
|