1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file util.c
* \brief Utility functions
*
* <pre>
* -- SuperLU routine (version 4.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November, 2010
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
* </pre>
*/
#include <math.h>
#include "slu_ddefs.h"
/*! \brief Global statistics variale
*/
void superlu_abort_and_exit(char* msg)
{
fprintf(stderr, "%s", msg);
exit (-1);
}
/*! \brief Set the default values for the options argument.
*/
void set_default_options(superlu_options_t *options)
{
options->Fact = DOFACT;
options->Equil = YES;
options->ColPerm = COLAMD;
options->Trans = NOTRANS;
options->IterRefine = NOREFINE;
options->DiagPivotThresh = 1.0;
options->SymmetricMode = NO;
options->PivotGrowth = NO;
options->ConditionNumber = NO;
options->PrintStat = YES;
}
/*! \brief Set the default values for the options argument for ILU.
*/
void ilu_set_default_options(superlu_options_t *options)
{
set_default_options(options);
/* further options for incomplete factorization */
options->DiagPivotThresh = 0.1;
options->RowPerm = LargeDiag;
options->ILU_DropRule = DROP_BASIC | DROP_AREA;
options->ILU_DropTol = 1e-4;
options->ILU_FillFactor = 10.0;
options->ILU_Norm = INF_NORM;
options->ILU_MILU = SILU;
options->ILU_MILU_Dim = 3.0; /* -log(n)/log(h) is perfect */
options->ILU_FillTol = 1e-2;
}
/*! \brief Print the options setting.
*/
void print_options(superlu_options_t *options)
{
printf(".. options:\n");
printf("\tFact\t %8d\n", options->Fact);
printf("\tEquil\t %8d\n", options->Equil);
printf("\tColPerm\t %8d\n", options->ColPerm);
printf("\tDiagPivotThresh %8.4f\n", options->DiagPivotThresh);
printf("\tTrans\t %8d\n", options->Trans);
printf("\tIterRefine\t%4d\n", options->IterRefine);
printf("\tSymmetricMode\t%4d\n", options->SymmetricMode);
printf("\tPivotGrowth\t%4d\n", options->PivotGrowth);
printf("\tConditionNumber\t%4d\n", options->ConditionNumber);
printf("..\n");
}
/*! \brief Print the options setting.
*/
void print_ilu_options(superlu_options_t *options)
{
printf(".. ILU options:\n");
printf("\tDiagPivotThresh\t%6.2e\n", options->DiagPivotThresh);
printf("\ttau\t%6.2e\n", options->ILU_DropTol);
printf("\tgamma\t%6.2f\n", options->ILU_FillFactor);
printf("\tDropRule\t%0x\n", options->ILU_DropRule);
printf("\tMILU\t%d\n", options->ILU_MILU);
printf("\tMILU_ALPHA\t%6.2e\n", MILU_ALPHA);
printf("\tDiagFillTol\t%6.2e\n", options->ILU_FillTol);
printf("..\n");
}
/*! \brief Deallocate the structure pointing to the actual storage of the matrix. */
void
Destroy_SuperMatrix_Store(SuperMatrix *A)
{
SUPERLU_FREE ( A->Store );
}
void
Destroy_CompCol_Matrix(SuperMatrix *A)
{
SUPERLU_FREE( ((NCformat *)A->Store)->rowind );
SUPERLU_FREE( ((NCformat *)A->Store)->colptr );
SUPERLU_FREE( ((NCformat *)A->Store)->nzval );
SUPERLU_FREE( A->Store );
}
void
Destroy_CompRow_Matrix(SuperMatrix *A)
{
SUPERLU_FREE( ((NRformat *)A->Store)->colind );
SUPERLU_FREE( ((NRformat *)A->Store)->rowptr );
SUPERLU_FREE( ((NRformat *)A->Store)->nzval );
SUPERLU_FREE( A->Store );
}
void
Destroy_SuperNode_Matrix(SuperMatrix *A)
{
SUPERLU_FREE ( ((SCformat *)A->Store)->rowind );
SUPERLU_FREE ( ((SCformat *)A->Store)->rowind_colptr );
SUPERLU_FREE ( ((SCformat *)A->Store)->nzval );
SUPERLU_FREE ( ((SCformat *)A->Store)->nzval_colptr );
SUPERLU_FREE ( ((SCformat *)A->Store)->col_to_sup );
SUPERLU_FREE ( ((SCformat *)A->Store)->sup_to_col );
SUPERLU_FREE ( A->Store );
}
/*! \brief A is of type Stype==NCP */
void
Destroy_CompCol_Permuted(SuperMatrix *A)
{
SUPERLU_FREE ( ((NCPformat *)A->Store)->colbeg );
SUPERLU_FREE ( ((NCPformat *)A->Store)->colend );
SUPERLU_FREE ( A->Store );
}
/*! \brief A is of type Stype==DN */
void
Destroy_Dense_Matrix(SuperMatrix *A)
{
DNformat* Astore = A->Store;
SUPERLU_FREE (Astore->nzval);
SUPERLU_FREE ( A->Store );
}
/*! \brief Reset repfnz[] for the current column
*/
void
resetrep_col (const int nseg, const int *segrep, int *repfnz)
{
int i, irep;
for (i = 0; i < nseg; i++) {
irep = segrep[i];
repfnz[irep] = EMPTY;
}
}
/*! \brief Count the total number of nonzeros in factors L and U, and in the symmetrically reduced L.
*/
void
countnz(const int n, int *xprune, int *nnzL, int *nnzU, GlobalLU_t *Glu)
{
int nsuper, fsupc, i, j;
int nnzL0, jlen, irep;
int *xsup, *xlsub;
xsup = Glu->xsup;
xlsub = Glu->xlsub;
*nnzL = 0;
*nnzU = (Glu->xusub)[n];
nnzL0 = 0;
nsuper = (Glu->supno)[n];
if ( n <= 0 ) return;
/*
* For each supernode
*/
for (i = 0; i <= nsuper; i++) {
fsupc = xsup[i];
jlen = xlsub[fsupc+1] - xlsub[fsupc];
for (j = fsupc; j < xsup[i+1]; j++) {
*nnzL += jlen;
*nnzU += j - fsupc + 1;
jlen--;
}
irep = xsup[i+1] - 1;
nnzL0 += xprune[irep] - xlsub[irep];
}
/* printf("\tNo of nonzeros in symm-reduced L = %d\n", nnzL0);*/
}
/*! \brief Count the total number of nonzeros in factors L and U.
*/
void
ilu_countnz(const int n, int *nnzL, int *nnzU, GlobalLU_t *Glu)
{
int nsuper, fsupc, i, j;
int jlen, irep;
int *xsup, *xlsub;
xsup = Glu->xsup;
xlsub = Glu->xlsub;
*nnzL = 0;
*nnzU = (Glu->xusub)[n];
nsuper = (Glu->supno)[n];
if ( n <= 0 ) return;
/*
* For each supernode
*/
for (i = 0; i <= nsuper; i++) {
fsupc = xsup[i];
jlen = xlsub[fsupc+1] - xlsub[fsupc];
for (j = fsupc; j < xsup[i+1]; j++) {
*nnzL += jlen;
*nnzU += j - fsupc + 1;
jlen--;
}
irep = xsup[i+1] - 1;
}
}
/*! \brief Fix up the data storage lsub for L-subscripts. It removes the subscript sets for structural pruning, and applies permuation to the remaining subscripts.
*/
void
fixupL(const int n, const int *perm_r, GlobalLU_t *Glu)
{
register int nsuper, fsupc, nextl, i, j, k, jstrt;
int *xsup, *lsub, *xlsub;
if ( n <= 1 ) return;
xsup = Glu->xsup;
lsub = Glu->lsub;
xlsub = Glu->xlsub;
nextl = 0;
nsuper = (Glu->supno)[n];
/*
* For each supernode ...
*/
for (i = 0; i <= nsuper; i++) {
fsupc = xsup[i];
jstrt = xlsub[fsupc];
xlsub[fsupc] = nextl;
for (j = jstrt; j < xlsub[fsupc+1]; j++) {
lsub[nextl] = perm_r[lsub[j]]; /* Now indexed into P*A */
nextl++;
}
for (k = fsupc+1; k < xsup[i+1]; k++)
xlsub[k] = nextl; /* Other columns in supernode i */
}
xlsub[n] = nextl;
}
/*! \brief Diagnostic print of segment info after panel_dfs().
*/
void print_panel_seg(int n, int w, int jcol, int nseg,
int *segrep, int *repfnz)
{
int j, k;
for (j = jcol; j < jcol+w; j++) {
printf("\tcol %d:\n", j);
for (k = 0; k < nseg; k++)
printf("\t\tseg %d, segrep %d, repfnz %d\n", k,
segrep[k], repfnz[(j-jcol)*n + segrep[k]]);
}
}
void
StatInit(SuperLUStat_t *stat)
{
register int i, w, panel_size, relax;
panel_size = sp_ienv(1);
relax = sp_ienv(2);
w = SUPERLU_MAX(panel_size, relax);
stat->panel_histo = intCalloc(w+1);
stat->utime = (double *) SUPERLU_MALLOC(NPHASES * sizeof(double));
if (!stat->utime) ABORT("SUPERLU_MALLOC fails for stat->utime");
stat->ops = (flops_t *) SUPERLU_MALLOC(NPHASES * sizeof(flops_t));
if (!stat->ops) ABORT("SUPERLU_MALLOC fails for stat->ops");
for (i = 0; i < NPHASES; ++i) {
stat->utime[i] = 0.;
stat->ops[i] = 0.;
}
stat->TinyPivots = 0;
stat->RefineSteps = 0;
stat->expansions = 0;
#if ( PRNTlevel >= 1 )
printf(".. parameters in sp_ienv():\n");
printf("\t 1: panel size \t %4d \n"
"\t 2: relax \t %4d \n"
"\t 3: max. super \t %4d \n"
"\t 4: row-dim 2D \t %4d \n"
"\t 5: col-dim 2D \t %4d \n"
"\t 6: fill ratio \t %4d \n",
sp_ienv(1), sp_ienv(2), sp_ienv(3),
sp_ienv(4), sp_ienv(5), sp_ienv(6));
#endif
}
void
StatPrint(SuperLUStat_t *stat)
{
double *utime;
flops_t *ops;
utime = stat->utime;
ops = stat->ops;
printf("Factor time = %8.2f\n", utime[FACT]);
if ( utime[FACT] != 0.0 )
printf("Factor flops = %e\tMflops = %8.2f\n", ops[FACT],
ops[FACT]*1e-6/utime[FACT]);
printf("Solve time = %8.2f\n", utime[SOLVE]);
if ( utime[SOLVE] != 0.0 )
printf("Solve flops = %e\tMflops = %8.2f\n", ops[SOLVE],
ops[SOLVE]*1e-6/utime[SOLVE]);
printf("Number of memory expansions: %d\n", stat->expansions);
}
void
StatFree(SuperLUStat_t *stat)
{
SUPERLU_FREE(stat->panel_histo);
SUPERLU_FREE(stat->utime);
SUPERLU_FREE(stat->ops);
}
flops_t
LUFactFlops(SuperLUStat_t *stat)
{
return (stat->ops[FACT]);
}
flops_t
LUSolveFlops(SuperLUStat_t *stat)
{
return (stat->ops[SOLVE]);
}
/*! \brief Fills an integer array with a given value.
*/
void ifill(int *a, int alen, int ival)
{
register int i;
for (i = 0; i < alen; i++) a[i] = ival;
}
/*! \brief Get the statistics of the supernodes
*/
#define NBUCKS 10
void super_stats(int nsuper, int *xsup)
{
register int nsup1 = 0;
int i, isize, whichb, bl, bh;
int bucket[NBUCKS];
int max_sup_size = 0;
for (i = 0; i <= nsuper; i++) {
isize = xsup[i+1] - xsup[i];
if ( isize == 1 ) nsup1++;
if ( max_sup_size < isize ) max_sup_size = isize;
}
printf(" Supernode statistics:\n\tno of super = %d\n", nsuper+1);
printf("\tmax supernode size = %d\n", max_sup_size);
printf("\tno of size 1 supernodes = %d\n", nsup1);
/* Histogram of the supernode sizes */
ifill (bucket, NBUCKS, 0);
for (i = 0; i <= nsuper; i++) {
isize = xsup[i+1] - xsup[i];
whichb = (float) isize / max_sup_size * NBUCKS;
if (whichb >= NBUCKS) whichb = NBUCKS - 1;
bucket[whichb]++;
}
printf("\tHistogram of supernode sizes:\n");
for (i = 0; i < NBUCKS; i++) {
bl = (float) i * max_sup_size / NBUCKS;
bh = (float) (i+1) * max_sup_size / NBUCKS;
printf("\tsnode: %d-%d\t\t%d\n", bl+1, bh, bucket[i]);
}
}
float SpaSize(int n, int np, float sum_npw)
{
return (sum_npw*8 + np*8 + n*4)/1024.;
}
float DenseSize(int n, float sum_nw)
{
return (sum_nw*8 + n*8)/1024.;;
}
/*! \brief Check whether repfnz[] == EMPTY after reset.
*/
void check_repfnz(int n, int w, int jcol, int *repfnz)
{
int jj, k;
for (jj = jcol; jj < jcol+w; jj++)
for (k = 0; k < n; k++)
if ( repfnz[(jj-jcol)*n + k] != EMPTY ) {
fprintf(stderr, "col %d, repfnz_col[%d] = %d\n", jj,
k, repfnz[(jj-jcol)*n + k]);
ABORT("check_repfnz");
}
}
/*! \brief Print a summary of the testing results. */
void
PrintSumm(char *type, int nfail, int nrun, int nerrs)
{
if ( nfail > 0 )
printf("%3s driver: %d out of %d tests failed to pass the threshold\n",
type, nfail, nrun);
else
printf("All tests for %3s driver passed the threshold (%6d tests run)\n", type, nrun);
if ( nerrs > 0 )
printf("%6d error messages recorded\n", nerrs);
}
int print_int_vec(char *what, int n, int *vec)
{
int i;
printf("%s\n", what);
for (i = 0; i < n; ++i) printf("%d\t%d\n", i, vec[i]);
return 0;
}
int slu_PrintInt10(char *name, int len, int *x)
{
register int i;
printf("%10s:", name);
for (i = 0; i < len; ++i)
{
if ( i % 10 == 0 ) printf("\n\t[%2d-%2d]", i, i + 9);
printf("%6d", x[i]);
}
printf("\n");
return 0;
}
|