File: zmemory.c

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (710 lines) | stat: -rw-r--r-- 20,338 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required 
approvals from U.S. Dept. of Energy) 

All rights reserved. 

The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/

/*! @file zmemory.c
 * \brief Memory details
 *
 * <pre>
 * -- SuperLU routine (version 4.0) --
 * Lawrence Berkeley National Laboratory.
 * June 30, 2009
 * </pre>
 */
#include "slu_zdefs.h"


/* Internal prototypes */
void  *zexpand (int *, MemType,int, int, GlobalLU_t *);
int   zLUWorkInit (int, int, int, int **, doublecomplex **, GlobalLU_t *);
void  copy_mem_doublecomplex (int, void *, void *);
void  zStackCompress (GlobalLU_t *);
void  zSetupSpace (void *, int, GlobalLU_t *);
void  *zuser_malloc (int, int, GlobalLU_t *);
void  zuser_free (int, int, GlobalLU_t *);

/* External prototypes (in memory.c - prec-independent) */
extern void    copy_mem_int    (int, void *, void *);
extern void    user_bcopy      (char *, char *, int);


/* Macros to manipulate stack */
#define StackFull(x)         ( x + Glu->stack.used >= Glu->stack.size )
#define NotDoubleAlign(addr) ( (intptr_t)addr & 7 )
#define DoubleAlign(addr)    ( ((intptr_t)addr + 7) & ~7L )	
#define TempSpace(m, w)      ( (2*w + 4 + NO_MARKER) * m * sizeof(int) + \
			      (w + 1) * m * sizeof(doublecomplex) )
#define Reduce(alpha)        ((alpha + 1) / 2)  /* i.e. (alpha-1)/2 + 1 */




/*! \brief Setup the memory model to be used for factorization.
 *  
 *    lwork = 0: use system malloc;
 *    lwork > 0: use user-supplied work[] space.
 */
void zSetupSpace(void *work, int lwork, GlobalLU_t *Glu)
{
    if ( lwork == 0 ) {
	Glu->MemModel = SYSTEM; /* malloc/free */
    } else if ( lwork > 0 ) {
	Glu->MemModel = USER;   /* user provided space */
	Glu->stack.used = 0;
	Glu->stack.top1 = 0;
	Glu->stack.top2 = (lwork/4)*4; /* must be word addressable */
	Glu->stack.size = Glu->stack.top2;
	Glu->stack.array = (void *) work;
    }
}



void *zuser_malloc(int bytes, int which_end, GlobalLU_t *Glu)
{
    void *buf;
    
    if ( StackFull(bytes) ) return (NULL);

    if ( which_end == HEAD ) {
	buf = (char*) Glu->stack.array + Glu->stack.top1;
	Glu->stack.top1 += bytes;
    } else {
	Glu->stack.top2 -= bytes;
	buf = (char*) Glu->stack.array + Glu->stack.top2;
    }
    
    Glu->stack.used += bytes;
    return buf;
}


void zuser_free(int bytes, int which_end, GlobalLU_t *Glu)
{
    if ( which_end == HEAD ) {
	Glu->stack.top1 -= bytes;
    } else {
	Glu->stack.top2 += bytes;
    }
    Glu->stack.used -= bytes;
}



/*! \brief 
 *
 * <pre>
 * mem_usage consists of the following fields:
 *    - for_lu (float)
 *      The amount of space used in bytes for the L\U data structures.
 *    - total_needed (float)
 *      The amount of space needed in bytes to perform factorization.
 * </pre>
 */
int zQuerySpace(SuperMatrix *L, SuperMatrix *U, mem_usage_t *mem_usage)
{
    SCformat *Lstore;
    NCformat *Ustore;
    register int n, iword, dword, panel_size = sp_ienv(1);

    Lstore = L->Store;
    Ustore = U->Store;
    n = L->ncol;
    iword = sizeof(int);
    dword = sizeof(doublecomplex);

    /* For LU factors */
    mem_usage->for_lu = (float)( (4.0*n + 3.0) * iword +
                                 Lstore->nzval_colptr[n] * dword +
                                 Lstore->rowind_colptr[n] * iword );
    mem_usage->for_lu += (float)( (n + 1.0) * iword +
				 Ustore->colptr[n] * (dword + iword) );

    /* Working storage to support factorization */
    mem_usage->total_needed = mem_usage->for_lu +
	(float)( (2.0 * panel_size + 4.0 + NO_MARKER) * n * iword +
		(panel_size + 1.0) * n * dword );

    return 0;
} /* zQuerySpace */


/*! \brief
 *
 * <pre>
 * mem_usage consists of the following fields:
 *    - for_lu (float)
 *      The amount of space used in bytes for the L\U data structures.
 *    - total_needed (float)
 *      The amount of space needed in bytes to perform factorization.
 * </pre>
 */
int ilu_zQuerySpace(SuperMatrix *L, SuperMatrix *U, mem_usage_t *mem_usage)
{
    SCformat *Lstore;
    NCformat *Ustore;
    register int n, panel_size = sp_ienv(1);
    register float iword, dword;

    Lstore = L->Store;
    Ustore = U->Store;
    n = L->ncol;
    iword = sizeof(int);
    dword = sizeof(double);

    /* For LU factors */
    mem_usage->for_lu = (float)( (4.0f * n + 3.0f) * iword +
				 Lstore->nzval_colptr[n] * dword +
				 Lstore->rowind_colptr[n] * iword );
    mem_usage->for_lu += (float)( (n + 1.0f) * iword +
				 Ustore->colptr[n] * (dword + iword) );

    /* Working storage to support factorization.
       ILU needs 5*n more integers than LU */
    mem_usage->total_needed = mem_usage->for_lu +
	(float)( (2.0f * panel_size + 9.0f + NO_MARKER) * n * iword +
		(panel_size + 1.0f) * n * dword );

    return 0;
} /* ilu_zQuerySpace */


/*! \brief Allocate storage for the data structures common to all factor routines.
 *
 * <pre>
 * For those unpredictable size, estimate as fill_ratio * nnz(A).
 * Return value:
 *     If lwork = -1, return the estimated amount of space required, plus n;
 *     otherwise, return the amount of space actually allocated when
 *     memory allocation failure occurred.
 * </pre> 
 */
int
zLUMemInit(fact_t fact, void *work, int lwork, int m, int n, int annz,
	  int panel_size, double fill_ratio, SuperMatrix *L, SuperMatrix *U,
          GlobalLU_t *Glu, int **iwork, doublecomplex **dwork)
{
    int      info, iword, dword;
    SCformat *Lstore;
    NCformat *Ustore;
    int      *xsup, *supno;
    int      *lsub, *xlsub;
    doublecomplex   *lusup;
    int      *xlusup;
    doublecomplex   *ucol;
    int      *usub, *xusub;
    int      nzlmax, nzumax, nzlumax;
    
    iword     = sizeof(int);
    dword     = sizeof(doublecomplex);
    Glu->n    = n;
    Glu->num_expansions = 0;

    Glu->expanders = (ExpHeader *) SUPERLU_MALLOC( NO_MEMTYPE *
                                                     sizeof(ExpHeader) );
    if ( !Glu->expanders ) ABORT("SUPERLU_MALLOC fails for expanders");
    
    if ( fact != SamePattern_SameRowPerm ) {
	/* Guess for L\U factors */
	nzumax = nzlumax = fill_ratio * annz;
	nzlmax = SUPERLU_MAX(1, fill_ratio/4.) * annz;

	if ( lwork == -1 ) {
	    return ( GluIntArray(n) * iword + TempSpace(m, panel_size)
		    + (nzlmax+nzumax)*iword + (nzlumax+nzumax)*dword + n );
        } else {
	    zSetupSpace(work, lwork, Glu);
	}
	
#if ( PRNTlevel >= 1 )
	printf("zLUMemInit() called: fill_ratio %.0f, nzlmax %ld, nzumax %ld\n", 
	       fill_ratio, nzlmax, nzumax);
	fflush(stdout);
#endif	
	
	/* Integer pointers for L\U factors */
	if ( Glu->MemModel == SYSTEM ) {
	    xsup   = intMalloc(n+1);
	    supno  = intMalloc(n+1);
	    xlsub  = intMalloc(n+1);
	    xlusup = intMalloc(n+1);
	    xusub  = intMalloc(n+1);
	} else {
	    xsup   = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
	    supno  = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
	    xlsub  = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
	    xlusup = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
	    xusub  = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
	}

	lusup = (doublecomplex *) zexpand( &nzlumax, LUSUP, 0, 0, Glu );
	ucol  = (doublecomplex *) zexpand( &nzumax, UCOL, 0, 0, Glu );
	lsub  = (int *)    zexpand( &nzlmax, LSUB, 0, 0, Glu );
	usub  = (int *)    zexpand( &nzumax, USUB, 0, 1, Glu );

	while ( !lusup || !ucol || !lsub || !usub ) {
	    if ( Glu->MemModel == SYSTEM ) {
		SUPERLU_FREE(lusup); 
		SUPERLU_FREE(ucol); 
		SUPERLU_FREE(lsub); 
		SUPERLU_FREE(usub);
	    } else {
		zuser_free((nzlumax+nzumax)*dword+(nzlmax+nzumax)*iword,
                            HEAD, Glu);
	    }
	    nzlumax /= 2;
	    nzumax /= 2;
	    nzlmax /= 2;
	    if ( nzlumax < annz ) {
		printf("Not enough memory to perform factorization.\n");
		return (zmemory_usage(nzlmax, nzumax, nzlumax, n) + n);
	    }
#if ( PRNTlevel >= 1)
	    printf("zLUMemInit() reduce size: nzlmax %ld, nzumax %ld\n", 
		   nzlmax, nzumax);
	    fflush(stdout);
#endif
	    lusup = (doublecomplex *) zexpand( &nzlumax, LUSUP, 0, 0, Glu );
	    ucol  = (doublecomplex *) zexpand( &nzumax, UCOL, 0, 0, Glu );
	    lsub  = (int *)    zexpand( &nzlmax, LSUB, 0, 0, Glu );
	    usub  = (int *)    zexpand( &nzumax, USUB, 0, 1, Glu );
	}
	
    } else {
	/* fact == SamePattern_SameRowPerm */
	Lstore   = L->Store;
	Ustore   = U->Store;
	xsup     = Lstore->sup_to_col;
	supno    = Lstore->col_to_sup;
	xlsub    = Lstore->rowind_colptr;
	xlusup   = Lstore->nzval_colptr;
	xusub    = Ustore->colptr;
	nzlmax   = Glu->nzlmax;    /* max from previous factorization */
	nzumax   = Glu->nzumax;
	nzlumax  = Glu->nzlumax;
	
	if ( lwork == -1 ) {
	    return ( GluIntArray(n) * iword + TempSpace(m, panel_size)
		    + (nzlmax+nzumax)*iword + (nzlumax+nzumax)*dword + n );
        } else if ( lwork == 0 ) {
	    Glu->MemModel = SYSTEM;
	} else {
	    Glu->MemModel = USER;
	    Glu->stack.top2 = (lwork/4)*4; /* must be word-addressable */
	    Glu->stack.size = Glu->stack.top2;
	}
	
	lsub  = Glu->expanders[LSUB].mem  = Lstore->rowind;
	lusup = Glu->expanders[LUSUP].mem = Lstore->nzval;
	usub  = Glu->expanders[USUB].mem  = Ustore->rowind;
	ucol  = Glu->expanders[UCOL].mem  = Ustore->nzval;;
	Glu->expanders[LSUB].size         = nzlmax;
	Glu->expanders[LUSUP].size        = nzlumax;
	Glu->expanders[USUB].size         = nzumax;
	Glu->expanders[UCOL].size         = nzumax;	
    }

    Glu->xsup    = xsup;
    Glu->supno   = supno;
    Glu->lsub    = lsub;
    Glu->xlsub   = xlsub;
    Glu->lusup   = (void *) lusup;
    Glu->xlusup  = xlusup;
    Glu->ucol    = (void *) ucol;
    Glu->usub    = usub;
    Glu->xusub   = xusub;
    Glu->nzlmax  = nzlmax;
    Glu->nzumax  = nzumax;
    Glu->nzlumax = nzlumax;
    
    info = zLUWorkInit(m, n, panel_size, iwork, dwork, Glu);
    if ( info )
	return ( info + zmemory_usage(nzlmax, nzumax, nzlumax, n) + n);
    
    ++Glu->num_expansions;
    return 0;
    
} /* zLUMemInit */

/*! \brief Allocate known working storage. Returns 0 if success, otherwise
   returns the number of bytes allocated so far when failure occurred. */
int
zLUWorkInit(int m, int n, int panel_size, int **iworkptr, 
            doublecomplex **dworkptr, GlobalLU_t *Glu)
{
    int    isize, dsize, extra;
    doublecomplex *old_ptr;
    int    maxsuper = SUPERLU_MAX( sp_ienv(3), sp_ienv(7) ),
           rowblk   = sp_ienv(4);

    isize = ( (2 * panel_size + 3 + NO_MARKER ) * m + n ) * sizeof(int);
    dsize = (m * panel_size +
	     NUM_TEMPV(m,panel_size,maxsuper,rowblk)) * sizeof(doublecomplex);
    
    if ( Glu->MemModel == SYSTEM ) 
	*iworkptr = (int *) intCalloc(isize/sizeof(int));
    else
	*iworkptr = (int *) zuser_malloc(isize, TAIL, Glu);
    if ( ! *iworkptr ) {
	fprintf(stderr, "zLUWorkInit: malloc fails for local iworkptr[]\n");
	return (isize + n);
    }

    if ( Glu->MemModel == SYSTEM )
	*dworkptr = (doublecomplex *) SUPERLU_MALLOC(dsize);
    else {
	*dworkptr = (doublecomplex *) zuser_malloc(dsize, TAIL, Glu);
	if ( NotDoubleAlign(*dworkptr) ) {
	    old_ptr = *dworkptr;
	    *dworkptr = (doublecomplex*) DoubleAlign(*dworkptr);
	    *dworkptr = (doublecomplex*) ((double*)*dworkptr - 1);
	    extra = (char*)old_ptr - (char*)*dworkptr;
#ifdef DEBUG	    
	    printf("zLUWorkInit: not aligned, extra %d\n", extra);
#endif	    
	    Glu->stack.top2 -= extra;
	    Glu->stack.used += extra;
	}
    }
    if ( ! *dworkptr ) {
	fprintf(stderr, "malloc fails for local dworkptr[].");
	return (isize + dsize + n);
    }
	
    return 0;
}


/*! \brief Set up pointers for real working arrays.
 */
void
zSetRWork(int m, int panel_size, doublecomplex *dworkptr,
	 doublecomplex **dense, doublecomplex **tempv)
{
    doublecomplex zero = {0.0, 0.0};

    int maxsuper = SUPERLU_MAX( sp_ienv(3), sp_ienv(7) ),
        rowblk   = sp_ienv(4);
    *dense = dworkptr;
    *tempv = *dense + panel_size*m;
    zfill (*dense, m * panel_size, zero);
    zfill (*tempv, NUM_TEMPV(m,panel_size,maxsuper,rowblk), zero);     
}
	
/*! \brief Free the working storage used by factor routines.
 */
void zLUWorkFree(int *iwork, doublecomplex *dwork, GlobalLU_t *Glu)
{
    if ( Glu->MemModel == SYSTEM ) {
	SUPERLU_FREE (iwork);
	SUPERLU_FREE (dwork);
    } else {
	Glu->stack.used -= (Glu->stack.size - Glu->stack.top2);
	Glu->stack.top2 = Glu->stack.size;
/*	zStackCompress(Glu);  */
    }
    
    SUPERLU_FREE (Glu->expanders);	
    Glu->expanders = NULL;
}

/*! \brief Expand the data structures for L and U during the factorization.
 * 
 * <pre>
 * Return value:   0 - successful return
 *               > 0 - number of bytes allocated when run out of space
 * </pre>
 */
int
zLUMemXpand(int jcol,
	   int next,          /* number of elements currently in the factors */
	   MemType mem_type,  /* which type of memory to expand  */
	   int *maxlen,       /* modified - maximum length of a data structure */
	   GlobalLU_t *Glu    /* modified - global LU data structures */
	   )
{
    void   *new_mem;
    
#ifdef DEBUG    
    printf("zLUMemXpand(): jcol %d, next %d, maxlen %d, MemType %d\n",
	   jcol, next, *maxlen, mem_type);
#endif    

    if (mem_type == USUB) 
    	new_mem = zexpand(maxlen, mem_type, next, 1, Glu);
    else
	new_mem = zexpand(maxlen, mem_type, next, 0, Glu);
    
    if ( !new_mem ) {
	int    nzlmax  = Glu->nzlmax;
	int    nzumax  = Glu->nzumax;
	int    nzlumax = Glu->nzlumax;
    	fprintf(stderr, "Can't expand MemType %d: jcol %d\n", mem_type, jcol);
    	return (zmemory_usage(nzlmax, nzumax, nzlumax, Glu->n) + Glu->n);
    }

    switch ( mem_type ) {
      case LUSUP:
	Glu->lusup   = (void *) new_mem;
	Glu->nzlumax = *maxlen;
	break;
      case UCOL:
	Glu->ucol   = (void *) new_mem;
	Glu->nzumax = *maxlen;
	break;
      case LSUB:
	Glu->lsub   = (int *) new_mem;
	Glu->nzlmax = *maxlen;
	break;
      case USUB:
	Glu->usub   = (int *) new_mem;
	Glu->nzumax = *maxlen;
	break;
    }
    
    return 0;
    
}



void
copy_mem_doublecomplex(int howmany, void *old, void *new)
{
    register int i;
    doublecomplex *dold = old;
    doublecomplex *dnew = new;
    for (i = 0; i < howmany; i++) dnew[i] = dold[i];
}

/*! \brief Expand the existing storage to accommodate more fill-ins.
 */
void
*zexpand (
	 int *prev_len,   /* length used from previous call */
	 MemType type,    /* which part of the memory to expand */
	 int len_to_copy, /* size of the memory to be copied to new store */
	 int keep_prev,   /* = 1: use prev_len;
			     = 0: compute new_len to expand */
	 GlobalLU_t *Glu  /* modified - global LU data structures */
	)
{
    float    EXPAND = 1.5;
    float    alpha;
    void     *new_mem, *old_mem;
    int      new_len, tries, lword, extra, bytes_to_copy;
    ExpHeader *expanders = Glu->expanders; /* Array of 4 types of memory */

    alpha = EXPAND;

    if ( Glu->num_expansions == 0 || keep_prev ) {
        /* First time allocate requested */
        new_len = *prev_len;
    } else {
	new_len = alpha * *prev_len;
    }
    
    if ( type == LSUB || type == USUB ) lword = sizeof(int);
    else lword = sizeof(doublecomplex);

    if ( Glu->MemModel == SYSTEM ) {
	new_mem = (void *) SUPERLU_MALLOC((size_t)new_len * lword);
	if ( Glu->num_expansions != 0 ) {
	    tries = 0;
	    if ( keep_prev ) {
		if ( !new_mem ) return (NULL);
	    } else {
		while ( !new_mem ) {
		    if ( ++tries > 10 ) return (NULL);
		    alpha = Reduce(alpha);
		    new_len = alpha * *prev_len;
		    new_mem = (void *) SUPERLU_MALLOC((size_t)new_len * lword);
		}
	    }
	    if ( type == LSUB || type == USUB ) {
		copy_mem_int(len_to_copy, expanders[type].mem, new_mem);
	    } else {
		copy_mem_doublecomplex(len_to_copy, expanders[type].mem, new_mem);
	    }
	    SUPERLU_FREE (expanders[type].mem);
	}
	expanders[type].mem = (void *) new_mem;
	
    } else { /* MemModel == USER */
	if ( Glu->num_expansions == 0 ) {
	    new_mem = zuser_malloc(new_len * lword, HEAD, Glu);
	    if ( NotDoubleAlign(new_mem) &&
		(type == LUSUP || type == UCOL) ) {
		old_mem = new_mem;
		new_mem = (void *)DoubleAlign(new_mem);
		extra = (char*)new_mem - (char*)old_mem;
#ifdef DEBUG		
		printf("expand(): not aligned, extra %d\n", extra);
#endif		
		Glu->stack.top1 += extra;
		Glu->stack.used += extra;
	    }
	    expanders[type].mem = (void *) new_mem;
	} else {
	    tries = 0;
	    extra = (new_len - *prev_len) * lword;
	    if ( keep_prev ) {
		if ( StackFull(extra) ) return (NULL);
	    } else {
		while ( StackFull(extra) ) {
		    if ( ++tries > 10 ) return (NULL);
		    alpha = Reduce(alpha);
		    new_len = alpha * *prev_len;
		    extra = (new_len - *prev_len) * lword;	    
		}
	    }

	    if ( type != USUB ) {
		new_mem = (void*)((char*)expanders[type + 1].mem + extra);
		bytes_to_copy = (char*)Glu->stack.array + Glu->stack.top1
		    - (char*)expanders[type + 1].mem;
		user_bcopy(expanders[type+1].mem, new_mem, bytes_to_copy);

		if ( type < USUB ) {
		    Glu->usub = expanders[USUB].mem =
			(void*)((char*)expanders[USUB].mem + extra);
		}
		if ( type < LSUB ) {
		    Glu->lsub = expanders[LSUB].mem =
			(void*)((char*)expanders[LSUB].mem + extra);
		}
		if ( type < UCOL ) {
		    Glu->ucol = expanders[UCOL].mem =
			(void*)((char*)expanders[UCOL].mem + extra);
		}
		Glu->stack.top1 += extra;
		Glu->stack.used += extra;
		if ( type == UCOL ) {
		    Glu->stack.top1 += extra;   /* Add same amount for USUB */
		    Glu->stack.used += extra;
		}
		
	    } /* if ... */

	} /* else ... */
    }

    expanders[type].size = new_len;
    *prev_len = new_len;
    if ( Glu->num_expansions ) ++Glu->num_expansions;
    
    return (void *) expanders[type].mem;
    
} /* zexpand */


/*! \brief Compress the work[] array to remove fragmentation.
 */
void
zStackCompress(GlobalLU_t *Glu)
{
    register int iword, dword, ndim;
    char    *last, *fragment;
    int      *ifrom, *ito;
    doublecomplex   *dfrom, *dto;
    int      *xlsub, *lsub, *xusub, *usub, *xlusup;
    doublecomplex   *ucol, *lusup;
    
    iword = sizeof(int);
    dword = sizeof(doublecomplex);
    ndim = Glu->n;

    xlsub  = Glu->xlsub;
    lsub   = Glu->lsub;
    xusub  = Glu->xusub;
    usub   = Glu->usub;
    xlusup = Glu->xlusup;
    ucol   = Glu->ucol;
    lusup  = Glu->lusup;
    
    dfrom = ucol;
    dto = (doublecomplex *)((char*)lusup + xlusup[ndim] * dword);
    copy_mem_doublecomplex(xusub[ndim], dfrom, dto);
    ucol = dto;

    ifrom = lsub;
    ito = (int *) ((char*)ucol + xusub[ndim] * iword);
    copy_mem_int(xlsub[ndim], ifrom, ito);
    lsub = ito;
    
    ifrom = usub;
    ito = (int *) ((char*)lsub + xlsub[ndim] * iword);
    copy_mem_int(xusub[ndim], ifrom, ito);
    usub = ito;
    
    last = (char*)usub + xusub[ndim] * iword;
    fragment = (char*) (((char*)Glu->stack.array + Glu->stack.top1) - last);
    Glu->stack.used -= (long int) fragment;
    Glu->stack.top1 -= (long int) fragment;

    Glu->ucol = ucol;
    Glu->lsub = lsub;
    Glu->usub = usub;
    
#ifdef DEBUG
    printf("zStackCompress: fragment %d\n", fragment);
    /* for (last = 0; last < ndim; ++last)
	print_lu_col("After compress:", last, 0);*/
#endif    
    
}

/*! \brief Allocate storage for original matrix A
 */
void
zallocateA(int n, int nnz, doublecomplex **a, int **asub, int **xa)
{
    *a    = (doublecomplex *) doublecomplexMalloc(nnz);
    *asub = (int *) intMalloc(nnz);
    *xa   = (int *) intMalloc(n+1);
}


doublecomplex *doublecomplexMalloc(int n)
{
    doublecomplex *buf;
    buf = (doublecomplex *) SUPERLU_MALLOC((size_t)n * sizeof(doublecomplex)); 
    if ( !buf ) {
	ABORT("SUPERLU_MALLOC failed for buf in doublecomplexMalloc()\n");
    }
    return (buf);
}

doublecomplex *doublecomplexCalloc(int n)
{
    doublecomplex *buf;
    register int i;
    doublecomplex zero = {0.0, 0.0};
    buf = (doublecomplex *) SUPERLU_MALLOC((size_t)n * sizeof(doublecomplex));
    if ( !buf ) {
	ABORT("SUPERLU_MALLOC failed for buf in doublecomplexCalloc()\n");
    }
    for (i = 0; i < n; ++i) buf[i] = zero;
    return (buf);
}


int zmemory_usage(const int nzlmax, const int nzumax, 
		  const int nzlumax, const int n)
{
    register int iword, dword;

    iword   = sizeof(int);
    dword   = sizeof(doublecomplex);
    
    return (10 * n * iword +
	    nzlmax * iword + nzumax * (iword + dword) + nzlumax * dword);

}