1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
/*! \file
Copyright (c) 2003, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy)
All rights reserved.
The source code is distributed under BSD license, see the file License.txt
at the top-level directory.
*/
/*! @file zmemory.c
* \brief Memory details
*
* <pre>
* -- SuperLU routine (version 4.0) --
* Lawrence Berkeley National Laboratory.
* June 30, 2009
* </pre>
*/
#include "slu_zdefs.h"
/* Internal prototypes */
void *zexpand (int *, MemType,int, int, GlobalLU_t *);
int zLUWorkInit (int, int, int, int **, doublecomplex **, GlobalLU_t *);
void copy_mem_doublecomplex (int, void *, void *);
void zStackCompress (GlobalLU_t *);
void zSetupSpace (void *, int, GlobalLU_t *);
void *zuser_malloc (int, int, GlobalLU_t *);
void zuser_free (int, int, GlobalLU_t *);
/* External prototypes (in memory.c - prec-independent) */
extern void copy_mem_int (int, void *, void *);
extern void user_bcopy (char *, char *, int);
/* Macros to manipulate stack */
#define StackFull(x) ( x + Glu->stack.used >= Glu->stack.size )
#define NotDoubleAlign(addr) ( (intptr_t)addr & 7 )
#define DoubleAlign(addr) ( ((intptr_t)addr + 7) & ~7L )
#define TempSpace(m, w) ( (2*w + 4 + NO_MARKER) * m * sizeof(int) + \
(w + 1) * m * sizeof(doublecomplex) )
#define Reduce(alpha) ((alpha + 1) / 2) /* i.e. (alpha-1)/2 + 1 */
/*! \brief Setup the memory model to be used for factorization.
*
* lwork = 0: use system malloc;
* lwork > 0: use user-supplied work[] space.
*/
void zSetupSpace(void *work, int lwork, GlobalLU_t *Glu)
{
if ( lwork == 0 ) {
Glu->MemModel = SYSTEM; /* malloc/free */
} else if ( lwork > 0 ) {
Glu->MemModel = USER; /* user provided space */
Glu->stack.used = 0;
Glu->stack.top1 = 0;
Glu->stack.top2 = (lwork/4)*4; /* must be word addressable */
Glu->stack.size = Glu->stack.top2;
Glu->stack.array = (void *) work;
}
}
void *zuser_malloc(int bytes, int which_end, GlobalLU_t *Glu)
{
void *buf;
if ( StackFull(bytes) ) return (NULL);
if ( which_end == HEAD ) {
buf = (char*) Glu->stack.array + Glu->stack.top1;
Glu->stack.top1 += bytes;
} else {
Glu->stack.top2 -= bytes;
buf = (char*) Glu->stack.array + Glu->stack.top2;
}
Glu->stack.used += bytes;
return buf;
}
void zuser_free(int bytes, int which_end, GlobalLU_t *Glu)
{
if ( which_end == HEAD ) {
Glu->stack.top1 -= bytes;
} else {
Glu->stack.top2 += bytes;
}
Glu->stack.used -= bytes;
}
/*! \brief
*
* <pre>
* mem_usage consists of the following fields:
* - for_lu (float)
* The amount of space used in bytes for the L\U data structures.
* - total_needed (float)
* The amount of space needed in bytes to perform factorization.
* </pre>
*/
int zQuerySpace(SuperMatrix *L, SuperMatrix *U, mem_usage_t *mem_usage)
{
SCformat *Lstore;
NCformat *Ustore;
register int n, iword, dword, panel_size = sp_ienv(1);
Lstore = L->Store;
Ustore = U->Store;
n = L->ncol;
iword = sizeof(int);
dword = sizeof(doublecomplex);
/* For LU factors */
mem_usage->for_lu = (float)( (4.0*n + 3.0) * iword +
Lstore->nzval_colptr[n] * dword +
Lstore->rowind_colptr[n] * iword );
mem_usage->for_lu += (float)( (n + 1.0) * iword +
Ustore->colptr[n] * (dword + iword) );
/* Working storage to support factorization */
mem_usage->total_needed = mem_usage->for_lu +
(float)( (2.0 * panel_size + 4.0 + NO_MARKER) * n * iword +
(panel_size + 1.0) * n * dword );
return 0;
} /* zQuerySpace */
/*! \brief
*
* <pre>
* mem_usage consists of the following fields:
* - for_lu (float)
* The amount of space used in bytes for the L\U data structures.
* - total_needed (float)
* The amount of space needed in bytes to perform factorization.
* </pre>
*/
int ilu_zQuerySpace(SuperMatrix *L, SuperMatrix *U, mem_usage_t *mem_usage)
{
SCformat *Lstore;
NCformat *Ustore;
register int n, panel_size = sp_ienv(1);
register float iword, dword;
Lstore = L->Store;
Ustore = U->Store;
n = L->ncol;
iword = sizeof(int);
dword = sizeof(double);
/* For LU factors */
mem_usage->for_lu = (float)( (4.0f * n + 3.0f) * iword +
Lstore->nzval_colptr[n] * dword +
Lstore->rowind_colptr[n] * iword );
mem_usage->for_lu += (float)( (n + 1.0f) * iword +
Ustore->colptr[n] * (dword + iword) );
/* Working storage to support factorization.
ILU needs 5*n more integers than LU */
mem_usage->total_needed = mem_usage->for_lu +
(float)( (2.0f * panel_size + 9.0f + NO_MARKER) * n * iword +
(panel_size + 1.0f) * n * dword );
return 0;
} /* ilu_zQuerySpace */
/*! \brief Allocate storage for the data structures common to all factor routines.
*
* <pre>
* For those unpredictable size, estimate as fill_ratio * nnz(A).
* Return value:
* If lwork = -1, return the estimated amount of space required, plus n;
* otherwise, return the amount of space actually allocated when
* memory allocation failure occurred.
* </pre>
*/
int
zLUMemInit(fact_t fact, void *work, int lwork, int m, int n, int annz,
int panel_size, double fill_ratio, SuperMatrix *L, SuperMatrix *U,
GlobalLU_t *Glu, int **iwork, doublecomplex **dwork)
{
int info, iword, dword;
SCformat *Lstore;
NCformat *Ustore;
int *xsup, *supno;
int *lsub, *xlsub;
doublecomplex *lusup;
int *xlusup;
doublecomplex *ucol;
int *usub, *xusub;
int nzlmax, nzumax, nzlumax;
iword = sizeof(int);
dword = sizeof(doublecomplex);
Glu->n = n;
Glu->num_expansions = 0;
Glu->expanders = (ExpHeader *) SUPERLU_MALLOC( NO_MEMTYPE *
sizeof(ExpHeader) );
if ( !Glu->expanders ) ABORT("SUPERLU_MALLOC fails for expanders");
if ( fact != SamePattern_SameRowPerm ) {
/* Guess for L\U factors */
nzumax = nzlumax = fill_ratio * annz;
nzlmax = SUPERLU_MAX(1, fill_ratio/4.) * annz;
if ( lwork == -1 ) {
return ( GluIntArray(n) * iword + TempSpace(m, panel_size)
+ (nzlmax+nzumax)*iword + (nzlumax+nzumax)*dword + n );
} else {
zSetupSpace(work, lwork, Glu);
}
#if ( PRNTlevel >= 1 )
printf("zLUMemInit() called: fill_ratio %.0f, nzlmax %ld, nzumax %ld\n",
fill_ratio, nzlmax, nzumax);
fflush(stdout);
#endif
/* Integer pointers for L\U factors */
if ( Glu->MemModel == SYSTEM ) {
xsup = intMalloc(n+1);
supno = intMalloc(n+1);
xlsub = intMalloc(n+1);
xlusup = intMalloc(n+1);
xusub = intMalloc(n+1);
} else {
xsup = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
supno = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
xlsub = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
xlusup = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
xusub = (int *)zuser_malloc((n+1) * iword, HEAD, Glu);
}
lusup = (doublecomplex *) zexpand( &nzlumax, LUSUP, 0, 0, Glu );
ucol = (doublecomplex *) zexpand( &nzumax, UCOL, 0, 0, Glu );
lsub = (int *) zexpand( &nzlmax, LSUB, 0, 0, Glu );
usub = (int *) zexpand( &nzumax, USUB, 0, 1, Glu );
while ( !lusup || !ucol || !lsub || !usub ) {
if ( Glu->MemModel == SYSTEM ) {
SUPERLU_FREE(lusup);
SUPERLU_FREE(ucol);
SUPERLU_FREE(lsub);
SUPERLU_FREE(usub);
} else {
zuser_free((nzlumax+nzumax)*dword+(nzlmax+nzumax)*iword,
HEAD, Glu);
}
nzlumax /= 2;
nzumax /= 2;
nzlmax /= 2;
if ( nzlumax < annz ) {
printf("Not enough memory to perform factorization.\n");
return (zmemory_usage(nzlmax, nzumax, nzlumax, n) + n);
}
#if ( PRNTlevel >= 1)
printf("zLUMemInit() reduce size: nzlmax %ld, nzumax %ld\n",
nzlmax, nzumax);
fflush(stdout);
#endif
lusup = (doublecomplex *) zexpand( &nzlumax, LUSUP, 0, 0, Glu );
ucol = (doublecomplex *) zexpand( &nzumax, UCOL, 0, 0, Glu );
lsub = (int *) zexpand( &nzlmax, LSUB, 0, 0, Glu );
usub = (int *) zexpand( &nzumax, USUB, 0, 1, Glu );
}
} else {
/* fact == SamePattern_SameRowPerm */
Lstore = L->Store;
Ustore = U->Store;
xsup = Lstore->sup_to_col;
supno = Lstore->col_to_sup;
xlsub = Lstore->rowind_colptr;
xlusup = Lstore->nzval_colptr;
xusub = Ustore->colptr;
nzlmax = Glu->nzlmax; /* max from previous factorization */
nzumax = Glu->nzumax;
nzlumax = Glu->nzlumax;
if ( lwork == -1 ) {
return ( GluIntArray(n) * iword + TempSpace(m, panel_size)
+ (nzlmax+nzumax)*iword + (nzlumax+nzumax)*dword + n );
} else if ( lwork == 0 ) {
Glu->MemModel = SYSTEM;
} else {
Glu->MemModel = USER;
Glu->stack.top2 = (lwork/4)*4; /* must be word-addressable */
Glu->stack.size = Glu->stack.top2;
}
lsub = Glu->expanders[LSUB].mem = Lstore->rowind;
lusup = Glu->expanders[LUSUP].mem = Lstore->nzval;
usub = Glu->expanders[USUB].mem = Ustore->rowind;
ucol = Glu->expanders[UCOL].mem = Ustore->nzval;;
Glu->expanders[LSUB].size = nzlmax;
Glu->expanders[LUSUP].size = nzlumax;
Glu->expanders[USUB].size = nzumax;
Glu->expanders[UCOL].size = nzumax;
}
Glu->xsup = xsup;
Glu->supno = supno;
Glu->lsub = lsub;
Glu->xlsub = xlsub;
Glu->lusup = (void *) lusup;
Glu->xlusup = xlusup;
Glu->ucol = (void *) ucol;
Glu->usub = usub;
Glu->xusub = xusub;
Glu->nzlmax = nzlmax;
Glu->nzumax = nzumax;
Glu->nzlumax = nzlumax;
info = zLUWorkInit(m, n, panel_size, iwork, dwork, Glu);
if ( info )
return ( info + zmemory_usage(nzlmax, nzumax, nzlumax, n) + n);
++Glu->num_expansions;
return 0;
} /* zLUMemInit */
/*! \brief Allocate known working storage. Returns 0 if success, otherwise
returns the number of bytes allocated so far when failure occurred. */
int
zLUWorkInit(int m, int n, int panel_size, int **iworkptr,
doublecomplex **dworkptr, GlobalLU_t *Glu)
{
int isize, dsize, extra;
doublecomplex *old_ptr;
int maxsuper = SUPERLU_MAX( sp_ienv(3), sp_ienv(7) ),
rowblk = sp_ienv(4);
isize = ( (2 * panel_size + 3 + NO_MARKER ) * m + n ) * sizeof(int);
dsize = (m * panel_size +
NUM_TEMPV(m,panel_size,maxsuper,rowblk)) * sizeof(doublecomplex);
if ( Glu->MemModel == SYSTEM )
*iworkptr = (int *) intCalloc(isize/sizeof(int));
else
*iworkptr = (int *) zuser_malloc(isize, TAIL, Glu);
if ( ! *iworkptr ) {
fprintf(stderr, "zLUWorkInit: malloc fails for local iworkptr[]\n");
return (isize + n);
}
if ( Glu->MemModel == SYSTEM )
*dworkptr = (doublecomplex *) SUPERLU_MALLOC(dsize);
else {
*dworkptr = (doublecomplex *) zuser_malloc(dsize, TAIL, Glu);
if ( NotDoubleAlign(*dworkptr) ) {
old_ptr = *dworkptr;
*dworkptr = (doublecomplex*) DoubleAlign(*dworkptr);
*dworkptr = (doublecomplex*) ((double*)*dworkptr - 1);
extra = (char*)old_ptr - (char*)*dworkptr;
#ifdef DEBUG
printf("zLUWorkInit: not aligned, extra %d\n", extra);
#endif
Glu->stack.top2 -= extra;
Glu->stack.used += extra;
}
}
if ( ! *dworkptr ) {
fprintf(stderr, "malloc fails for local dworkptr[].");
return (isize + dsize + n);
}
return 0;
}
/*! \brief Set up pointers for real working arrays.
*/
void
zSetRWork(int m, int panel_size, doublecomplex *dworkptr,
doublecomplex **dense, doublecomplex **tempv)
{
doublecomplex zero = {0.0, 0.0};
int maxsuper = SUPERLU_MAX( sp_ienv(3), sp_ienv(7) ),
rowblk = sp_ienv(4);
*dense = dworkptr;
*tempv = *dense + panel_size*m;
zfill (*dense, m * panel_size, zero);
zfill (*tempv, NUM_TEMPV(m,panel_size,maxsuper,rowblk), zero);
}
/*! \brief Free the working storage used by factor routines.
*/
void zLUWorkFree(int *iwork, doublecomplex *dwork, GlobalLU_t *Glu)
{
if ( Glu->MemModel == SYSTEM ) {
SUPERLU_FREE (iwork);
SUPERLU_FREE (dwork);
} else {
Glu->stack.used -= (Glu->stack.size - Glu->stack.top2);
Glu->stack.top2 = Glu->stack.size;
/* zStackCompress(Glu); */
}
SUPERLU_FREE (Glu->expanders);
Glu->expanders = NULL;
}
/*! \brief Expand the data structures for L and U during the factorization.
*
* <pre>
* Return value: 0 - successful return
* > 0 - number of bytes allocated when run out of space
* </pre>
*/
int
zLUMemXpand(int jcol,
int next, /* number of elements currently in the factors */
MemType mem_type, /* which type of memory to expand */
int *maxlen, /* modified - maximum length of a data structure */
GlobalLU_t *Glu /* modified - global LU data structures */
)
{
void *new_mem;
#ifdef DEBUG
printf("zLUMemXpand(): jcol %d, next %d, maxlen %d, MemType %d\n",
jcol, next, *maxlen, mem_type);
#endif
if (mem_type == USUB)
new_mem = zexpand(maxlen, mem_type, next, 1, Glu);
else
new_mem = zexpand(maxlen, mem_type, next, 0, Glu);
if ( !new_mem ) {
int nzlmax = Glu->nzlmax;
int nzumax = Glu->nzumax;
int nzlumax = Glu->nzlumax;
fprintf(stderr, "Can't expand MemType %d: jcol %d\n", mem_type, jcol);
return (zmemory_usage(nzlmax, nzumax, nzlumax, Glu->n) + Glu->n);
}
switch ( mem_type ) {
case LUSUP:
Glu->lusup = (void *) new_mem;
Glu->nzlumax = *maxlen;
break;
case UCOL:
Glu->ucol = (void *) new_mem;
Glu->nzumax = *maxlen;
break;
case LSUB:
Glu->lsub = (int *) new_mem;
Glu->nzlmax = *maxlen;
break;
case USUB:
Glu->usub = (int *) new_mem;
Glu->nzumax = *maxlen;
break;
}
return 0;
}
void
copy_mem_doublecomplex(int howmany, void *old, void *new)
{
register int i;
doublecomplex *dold = old;
doublecomplex *dnew = new;
for (i = 0; i < howmany; i++) dnew[i] = dold[i];
}
/*! \brief Expand the existing storage to accommodate more fill-ins.
*/
void
*zexpand (
int *prev_len, /* length used from previous call */
MemType type, /* which part of the memory to expand */
int len_to_copy, /* size of the memory to be copied to new store */
int keep_prev, /* = 1: use prev_len;
= 0: compute new_len to expand */
GlobalLU_t *Glu /* modified - global LU data structures */
)
{
float EXPAND = 1.5;
float alpha;
void *new_mem, *old_mem;
int new_len, tries, lword, extra, bytes_to_copy;
ExpHeader *expanders = Glu->expanders; /* Array of 4 types of memory */
alpha = EXPAND;
if ( Glu->num_expansions == 0 || keep_prev ) {
/* First time allocate requested */
new_len = *prev_len;
} else {
new_len = alpha * *prev_len;
}
if ( type == LSUB || type == USUB ) lword = sizeof(int);
else lword = sizeof(doublecomplex);
if ( Glu->MemModel == SYSTEM ) {
new_mem = (void *) SUPERLU_MALLOC((size_t)new_len * lword);
if ( Glu->num_expansions != 0 ) {
tries = 0;
if ( keep_prev ) {
if ( !new_mem ) return (NULL);
} else {
while ( !new_mem ) {
if ( ++tries > 10 ) return (NULL);
alpha = Reduce(alpha);
new_len = alpha * *prev_len;
new_mem = (void *) SUPERLU_MALLOC((size_t)new_len * lword);
}
}
if ( type == LSUB || type == USUB ) {
copy_mem_int(len_to_copy, expanders[type].mem, new_mem);
} else {
copy_mem_doublecomplex(len_to_copy, expanders[type].mem, new_mem);
}
SUPERLU_FREE (expanders[type].mem);
}
expanders[type].mem = (void *) new_mem;
} else { /* MemModel == USER */
if ( Glu->num_expansions == 0 ) {
new_mem = zuser_malloc(new_len * lword, HEAD, Glu);
if ( NotDoubleAlign(new_mem) &&
(type == LUSUP || type == UCOL) ) {
old_mem = new_mem;
new_mem = (void *)DoubleAlign(new_mem);
extra = (char*)new_mem - (char*)old_mem;
#ifdef DEBUG
printf("expand(): not aligned, extra %d\n", extra);
#endif
Glu->stack.top1 += extra;
Glu->stack.used += extra;
}
expanders[type].mem = (void *) new_mem;
} else {
tries = 0;
extra = (new_len - *prev_len) * lword;
if ( keep_prev ) {
if ( StackFull(extra) ) return (NULL);
} else {
while ( StackFull(extra) ) {
if ( ++tries > 10 ) return (NULL);
alpha = Reduce(alpha);
new_len = alpha * *prev_len;
extra = (new_len - *prev_len) * lword;
}
}
if ( type != USUB ) {
new_mem = (void*)((char*)expanders[type + 1].mem + extra);
bytes_to_copy = (char*)Glu->stack.array + Glu->stack.top1
- (char*)expanders[type + 1].mem;
user_bcopy(expanders[type+1].mem, new_mem, bytes_to_copy);
if ( type < USUB ) {
Glu->usub = expanders[USUB].mem =
(void*)((char*)expanders[USUB].mem + extra);
}
if ( type < LSUB ) {
Glu->lsub = expanders[LSUB].mem =
(void*)((char*)expanders[LSUB].mem + extra);
}
if ( type < UCOL ) {
Glu->ucol = expanders[UCOL].mem =
(void*)((char*)expanders[UCOL].mem + extra);
}
Glu->stack.top1 += extra;
Glu->stack.used += extra;
if ( type == UCOL ) {
Glu->stack.top1 += extra; /* Add same amount for USUB */
Glu->stack.used += extra;
}
} /* if ... */
} /* else ... */
}
expanders[type].size = new_len;
*prev_len = new_len;
if ( Glu->num_expansions ) ++Glu->num_expansions;
return (void *) expanders[type].mem;
} /* zexpand */
/*! \brief Compress the work[] array to remove fragmentation.
*/
void
zStackCompress(GlobalLU_t *Glu)
{
register int iword, dword, ndim;
char *last, *fragment;
int *ifrom, *ito;
doublecomplex *dfrom, *dto;
int *xlsub, *lsub, *xusub, *usub, *xlusup;
doublecomplex *ucol, *lusup;
iword = sizeof(int);
dword = sizeof(doublecomplex);
ndim = Glu->n;
xlsub = Glu->xlsub;
lsub = Glu->lsub;
xusub = Glu->xusub;
usub = Glu->usub;
xlusup = Glu->xlusup;
ucol = Glu->ucol;
lusup = Glu->lusup;
dfrom = ucol;
dto = (doublecomplex *)((char*)lusup + xlusup[ndim] * dword);
copy_mem_doublecomplex(xusub[ndim], dfrom, dto);
ucol = dto;
ifrom = lsub;
ito = (int *) ((char*)ucol + xusub[ndim] * iword);
copy_mem_int(xlsub[ndim], ifrom, ito);
lsub = ito;
ifrom = usub;
ito = (int *) ((char*)lsub + xlsub[ndim] * iword);
copy_mem_int(xusub[ndim], ifrom, ito);
usub = ito;
last = (char*)usub + xusub[ndim] * iword;
fragment = (char*) (((char*)Glu->stack.array + Glu->stack.top1) - last);
Glu->stack.used -= (long int) fragment;
Glu->stack.top1 -= (long int) fragment;
Glu->ucol = ucol;
Glu->lsub = lsub;
Glu->usub = usub;
#ifdef DEBUG
printf("zStackCompress: fragment %d\n", fragment);
/* for (last = 0; last < ndim; ++last)
print_lu_col("After compress:", last, 0);*/
#endif
}
/*! \brief Allocate storage for original matrix A
*/
void
zallocateA(int n, int nnz, doublecomplex **a, int **asub, int **xa)
{
*a = (doublecomplex *) doublecomplexMalloc(nnz);
*asub = (int *) intMalloc(nnz);
*xa = (int *) intMalloc(n+1);
}
doublecomplex *doublecomplexMalloc(int n)
{
doublecomplex *buf;
buf = (doublecomplex *) SUPERLU_MALLOC((size_t)n * sizeof(doublecomplex));
if ( !buf ) {
ABORT("SUPERLU_MALLOC failed for buf in doublecomplexMalloc()\n");
}
return (buf);
}
doublecomplex *doublecomplexCalloc(int n)
{
doublecomplex *buf;
register int i;
doublecomplex zero = {0.0, 0.0};
buf = (doublecomplex *) SUPERLU_MALLOC((size_t)n * sizeof(doublecomplex));
if ( !buf ) {
ABORT("SUPERLU_MALLOC failed for buf in doublecomplexCalloc()\n");
}
for (i = 0; i < n; ++i) buf[i] = zero;
return (buf);
}
int zmemory_usage(const int nzlmax, const int nzumax,
const int nzlumax, const int n)
{
register int iword, dword;
iword = sizeof(int);
dword = sizeof(doublecomplex);
return (10 * n * iword +
nzlmax * iword + nzumax * (iword + dword) + nzlumax * dword);
}
|