File: cneigh.f

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (257 lines) | stat: -rw-r--r-- 8,141 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
c\BeginDoc
c
c\Name: cneigh
c
c\Description:
c  Compute the eigenvalues of the current upper Hessenberg matrix
c  and the corresponding Ritz estimates given the current residual norm.
c
c\Usage:
c  call cneigh
c     ( RNORM, N, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, RWORK, IERR )
c
c\Arguments
c  RNORM   Real scalar.  (INPUT)
c          Residual norm corresponding to the current upper Hessenberg 
c          matrix H.
c
c  N       Integer.  (INPUT)
c          Size of the matrix H.
c
c  H       Complex N by N array.  (INPUT)
c          H contains the current upper Hessenberg matrix.
c
c  LDH     Integer.  (INPUT)
c          Leading dimension of H exactly as declared in the calling
c          program.
c
c  RITZ    Complex array of length N.  (OUTPUT)
c          On output, RITZ(1:N) contains the eigenvalues of H.
c
c  BOUNDS  Complex array of length N.  (OUTPUT)
c          On output, BOUNDS contains the Ritz estimates associated with
c          the eigenvalues held in RITZ.  This is equal to RNORM 
c          times the last components of the eigenvectors corresponding 
c          to the eigenvalues in RITZ.
c
c  Q       Complex N by N array.  (WORKSPACE)
c          Workspace needed to store the eigenvectors of H.
c
c  LDQ     Integer.  (INPUT)
c          Leading dimension of Q exactly as declared in the calling
c          program.
c
c  WORKL   Complex work array of length N**2 + 3*N.  (WORKSPACE)
c          Private (replicated) array on each PE or array allocated on
c          the front end.  This is needed to keep the full Schur form
c          of H and also in the calculation of the eigenvectors of H.
c
c  RWORK   Real  work array of length N (WORKSPACE)
c          Private (replicated) array on each PE or array allocated on
c          the front end. 
c
c  IERR    Integer.  (OUTPUT)
c          Error exit flag from clahqr or ctrevc.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c     xxxxxx  Complex
c
c\Routines called:
c     ivout   ARPACK utility routine that prints integers.
c     arscnd  ARPACK utility routine for timing.
c     cmout   ARPACK utility routine that prints matrices
c     cvout   ARPACK utility routine that prints vectors.
c     svout   ARPACK utility routine that prints vectors.
c     clacpy  LAPACK matrix copy routine.
c     clahqr  LAPACK routine to compute the Schur form of an
c             upper Hessenberg matrix.
c     claset  LAPACK matrix initialization routine.
c     ctrevc  LAPACK routine to compute the eigenvectors of a matrix
c             in upper triangular form
c     ccopy   Level 1 BLAS that copies one vector to another. 
c     csscal  Level 1 BLAS that scales a complex vector by a real number.
c     wscnrm2  Level 1 BLAS that computes the norm of a vector.
c     
c
c\Author
c     Danny Sorensen               Phuong Vu
c     Richard Lehoucq              CRPC / Rice University
c     Dept. of Computational &     Houston, Texas
c     Applied Mathematics 
c     Rice University           
c     Houston, Texas 
c
c\SCCS Information: @(#)
c FILE: neigh.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
c
c\Remarks
c     None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
      subroutine cneigh (rnorm, n, h, ldh, ritz, bounds, 
     &                   q, ldq, workl, rwork, ierr)
c
c     %----------------------------------------------------%
c     | Include files for debugging and timing information |
c     %----------------------------------------------------%
c
      include   'debug.h'
      include   'stat.h'
c
c     %------------------%
c     | Scalar Arguments |
c     %------------------%
c
      integer    ierr, n, ldh, ldq
      Real     
     &           rnorm
c
c     %-----------------%
c     | Array Arguments |
c     %-----------------%
c
      Complex     
     &           bounds(n), h(ldh,n), q(ldq,n), ritz(n),
     &           workl(n*(n+3)) 
      Real 
     &           rwork(n)
c 
c     %------------%
c     | Parameters |
c     %------------%
c
      Complex     
     &           one, zero
      Real
     &           rone
      parameter  (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0),
     &           rone = 1.0E+0)
c 
c     %------------------------%
c     | Local Scalars & Arrays |
c     %------------------------%
c
      logical    select(1)
      integer    j,  msglvl
      Complex     
     &           vl(1)
      Real
     &           temp
c
c     %----------------------%
c     | External Subroutines |
c     %----------------------%
c
      external   clacpy, clahqr, ctrevc, ccopy, 
     &           csscal, cmout, cvout, arscnd
c
c     %--------------------%
c     | External Functions |
c     %--------------------%
c
      Real 
     &           wscnrm2
      external   wscnrm2
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %-------------------------------%
c     | Initialize timing statistics  |
c     | & message level for debugging |
c     %-------------------------------%
c
      call arscnd (t0)
      msglvl = mceigh
c 
      if (msglvl .gt. 2) then
          call cmout (logfil, n, n, h, ldh, ndigit, 
     &         '_neigh: Entering upper Hessenberg matrix H ')
      end if
c 
c     %----------------------------------------------------------%
c     | 1. Compute the eigenvalues, the last components of the   |
c     |    corresponding Schur vectors and the full Schur form T |
c     |    of the current upper Hessenberg matrix H.             |
c     |    clahqr returns the full Schur form of H               | 
c     |    in WORKL(1:N**2), and the Schur vectors in q.         |
c     %----------------------------------------------------------%
c
      call clacpy ('All', n, n, h, ldh, workl, n)
      call claset ('All', n, n, zero, one, q, ldq)
      call clahqr (.true., .true., n, 1, n, workl, ldh, ritz,
     &             1, n, q, ldq, ierr)
      if (ierr .ne. 0) go to 9000
c
      call ccopy (n, q(n-1,1), ldq, bounds, 1)
      if (msglvl .gt. 1) then
         call cvout (logfil, n, bounds, ndigit,
     &              '_neigh: last row of the Schur matrix for H')
      end if
c
c     %----------------------------------------------------------%
c     | 2. Compute the eigenvectors of the full Schur form T and |
c     |    apply the Schur vectors to get the corresponding      |
c     |    eigenvectors.                                         |
c     %----------------------------------------------------------%
c
      call ctrevc ('Right', 'Back', select, n, workl, n, vl, n, q, 
     &             ldq, n, n, workl(n*n+1), rwork, ierr)
c
      if (ierr .ne. 0) go to 9000
c
c     %------------------------------------------------%
c     | Scale the returning eigenvectors so that their |
c     | Euclidean norms are all one. LAPACK subroutine |
c     | ctrevc returns each eigenvector normalized so  |
c     | that the element of largest magnitude has      |
c     | magnitude 1; here the magnitude of a complex   |
c     | number (x,y) is taken to be |x| + |y|.         |
c     %------------------------------------------------%
c
      do 10 j=1, n
            temp = wscnrm2( n, q(1,j), 1 )
            call csscal ( n, rone / temp, q(1,j), 1 )
   10 continue
c
      if (msglvl .gt. 1) then
         call ccopy(n, q(n,1), ldq, workl, 1)
         call cvout (logfil, n, workl, ndigit,
     &              '_neigh: Last row of the eigenvector matrix for H')
      end if
c
c     %----------------------------%
c     | Compute the Ritz estimates |
c     %----------------------------%
c
      call ccopy(n, q(n,1), n, bounds, 1)
      call csscal(n, rnorm, bounds, 1)
c
      if (msglvl .gt. 2) then
         call cvout (logfil, n, ritz, ndigit,
     &              '_neigh: The eigenvalues of H')
         call cvout (logfil, n, bounds, ndigit,
     &              '_neigh: Ritz estimates for the eigenvalues of H')
      end if
c
      call arscnd(t1)
      tceigh = tceigh + (t1 - t0)
c
 9000 continue
      return
c
c     %---------------%
c     | End of cneigh |
c     %---------------%
c
      end