1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
c\BeginDoc
c
c\Name: cneigh
c
c\Description:
c Compute the eigenvalues of the current upper Hessenberg matrix
c and the corresponding Ritz estimates given the current residual norm.
c
c\Usage:
c call cneigh
c ( RNORM, N, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, RWORK, IERR )
c
c\Arguments
c RNORM Real scalar. (INPUT)
c Residual norm corresponding to the current upper Hessenberg
c matrix H.
c
c N Integer. (INPUT)
c Size of the matrix H.
c
c H Complex N by N array. (INPUT)
c H contains the current upper Hessenberg matrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RITZ Complex array of length N. (OUTPUT)
c On output, RITZ(1:N) contains the eigenvalues of H.
c
c BOUNDS Complex array of length N. (OUTPUT)
c On output, BOUNDS contains the Ritz estimates associated with
c the eigenvalues held in RITZ. This is equal to RNORM
c times the last components of the eigenvectors corresponding
c to the eigenvalues in RITZ.
c
c Q Complex N by N array. (WORKSPACE)
c Workspace needed to store the eigenvectors of H.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Complex work array of length N**2 + 3*N. (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end. This is needed to keep the full Schur form
c of H and also in the calculation of the eigenvectors of H.
c
c RWORK Real work array of length N (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end.
c
c IERR Integer. (OUTPUT)
c Error exit flag from clahqr or ctrevc.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx Complex
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c cmout ARPACK utility routine that prints matrices
c cvout ARPACK utility routine that prints vectors.
c svout ARPACK utility routine that prints vectors.
c clacpy LAPACK matrix copy routine.
c clahqr LAPACK routine to compute the Schur form of an
c upper Hessenberg matrix.
c claset LAPACK matrix initialization routine.
c ctrevc LAPACK routine to compute the eigenvectors of a matrix
c in upper triangular form
c ccopy Level 1 BLAS that copies one vector to another.
c csscal Level 1 BLAS that scales a complex vector by a real number.
c wscnrm2 Level 1 BLAS that computes the norm of a vector.
c
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: neigh.F SID: 2.2 DATE OF SID: 4/20/96 RELEASE: 2
c
c\Remarks
c None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine cneigh (rnorm, n, h, ldh, ritz, bounds,
& q, ldq, workl, rwork, ierr)
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer ierr, n, ldh, ldq
Real
& rnorm
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Complex
& bounds(n), h(ldh,n), q(ldq,n), ritz(n),
& workl(n*(n+3))
Real
& rwork(n)
c
c %------------%
c | Parameters |
c %------------%
c
Complex
& one, zero
Real
& rone
parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0),
& rone = 1.0E+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
logical select(1)
integer j, msglvl
Complex
& vl(1)
Real
& temp
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external clacpy, clahqr, ctrevc, ccopy,
& csscal, cmout, cvout, arscnd
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& wscnrm2
external wscnrm2
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mceigh
c
if (msglvl .gt. 2) then
call cmout (logfil, n, n, h, ldh, ndigit,
& '_neigh: Entering upper Hessenberg matrix H ')
end if
c
c %----------------------------------------------------------%
c | 1. Compute the eigenvalues, the last components of the |
c | corresponding Schur vectors and the full Schur form T |
c | of the current upper Hessenberg matrix H. |
c | clahqr returns the full Schur form of H |
c | in WORKL(1:N**2), and the Schur vectors in q. |
c %----------------------------------------------------------%
c
call clacpy ('All', n, n, h, ldh, workl, n)
call claset ('All', n, n, zero, one, q, ldq)
call clahqr (.true., .true., n, 1, n, workl, ldh, ritz,
& 1, n, q, ldq, ierr)
if (ierr .ne. 0) go to 9000
c
call ccopy (n, q(n-1,1), ldq, bounds, 1)
if (msglvl .gt. 1) then
call cvout (logfil, n, bounds, ndigit,
& '_neigh: last row of the Schur matrix for H')
end if
c
c %----------------------------------------------------------%
c | 2. Compute the eigenvectors of the full Schur form T and |
c | apply the Schur vectors to get the corresponding |
c | eigenvectors. |
c %----------------------------------------------------------%
c
call ctrevc ('Right', 'Back', select, n, workl, n, vl, n, q,
& ldq, n, n, workl(n*n+1), rwork, ierr)
c
if (ierr .ne. 0) go to 9000
c
c %------------------------------------------------%
c | Scale the returning eigenvectors so that their |
c | Euclidean norms are all one. LAPACK subroutine |
c | ctrevc returns each eigenvector normalized so |
c | that the element of largest magnitude has |
c | magnitude 1; here the magnitude of a complex |
c | number (x,y) is taken to be |x| + |y|. |
c %------------------------------------------------%
c
do 10 j=1, n
temp = wscnrm2( n, q(1,j), 1 )
call csscal ( n, rone / temp, q(1,j), 1 )
10 continue
c
if (msglvl .gt. 1) then
call ccopy(n, q(n,1), ldq, workl, 1)
call cvout (logfil, n, workl, ndigit,
& '_neigh: Last row of the eigenvector matrix for H')
end if
c
c %----------------------------%
c | Compute the Ritz estimates |
c %----------------------------%
c
call ccopy(n, q(n,1), n, bounds, 1)
call csscal(n, rnorm, bounds, 1)
c
if (msglvl .gt. 2) then
call cvout (logfil, n, ritz, ndigit,
& '_neigh: The eigenvalues of H')
call cvout (logfil, n, bounds, ndigit,
& '_neigh: Ritz estimates for the eigenvalues of H')
end if
c
call arscnd(t1)
tceigh = tceigh + (t1 - t0)
c
9000 continue
return
c
c %---------------%
c | End of cneigh |
c %---------------%
c
end
|