1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: dnapps
c
c\Description:
c Given the Arnoldi factorization
c
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
c
c apply NP implicit shifts resulting in
c
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
c
c where Q is an orthogonal matrix which is the product of rotations
c and reflections resulting from the NP bulge chage sweeps.
c The updated Arnoldi factorization becomes:
c
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
c
c\Usage:
c call dnapps
c ( N, KEV, NP, SHIFTR, SHIFTI, V, LDV, H, LDH, RESID, Q, LDQ,
c WORKL, WORKD )
c
c\Arguments
c N Integer. (INPUT)
c Problem size, i.e. size of matrix A.
c
c KEV Integer. (INPUT/OUTPUT)
c KEV+NP is the size of the input matrix H.
c KEV is the size of the updated matrix HNEW. KEV is only
c updated on ouput when fewer than NP shifts are applied in
c order to keep the conjugate pair together.
c
c NP Integer. (INPUT)
c Number of implicit shifts to be applied.
c
c SHIFTR, Double precision array of length NP. (INPUT)
c SHIFTI Real and imaginary part of the shifts to be applied.
c Upon, entry to dnapps, the shifts must be sorted so that the
c conjugate pairs are in consecutive locations.
c
c V Double precision N by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, V contains the current KEV+NP Arnoldi vectors.
c On OUTPUT, V contains the updated KEV Arnoldi vectors
c in the first KEV columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Double precision (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, H contains the current KEV+NP by KEV+NP upper
c Hessenber matrix of the Arnoldi factorization.
c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
c matrix in the KEV leading submatrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RESID Double precision array of length N. (INPUT/OUTPUT)
c On INPUT, RESID contains the the residual vector r_{k+p}.
c On OUTPUT, RESID is the update residual vector rnew_{k}
c in the first KEV locations.
c
c Q Double precision KEV+NP by KEV+NP work array. (WORKSPACE)
c Work array used to accumulate the rotations and reflections
c during the bulge chase sweep.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Double precision work array of length (KEV+NP). (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end.
c
c WORKD Double precision work array of length 2*N. (WORKSPACE)
c Distributed array used in the application of the accumulated
c orthogonal matrix Q.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c dmout ARPACK utility routine that prints matrices.
c dvout ARPACK utility routine that prints vectors.
c dlabad LAPACK routine that computes machine constants.
c dlacpy LAPACK matrix copy routine.
c dlamch LAPACK routine that determines machine constants.
c dlanhs LAPACK routine that computes various norms of a matrix.
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c dlarf LAPACK routine that applies Householder reflection to
c a matrix.
c dlarfg LAPACK Householder reflection construction routine.
c dlartg LAPACK Givens rotation construction routine.
c dlaset LAPACK matrix initialization routine.
c dgemv Level 2 BLAS routine for matrix vector multiplication.
c daxpy Level 1 BLAS that computes a vector triad.
c dcopy Level 1 BLAS that copies one vector to another .
c dscal Level 1 BLAS that scales a vector.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c xx/xx/92: Version ' 2.4'
c
c\SCCS Information: @(#)
c FILE: napps.F SID: 2.4 DATE OF SID: 3/28/97 RELEASE: 2
c
c\Remarks
c 1. In this version, each shift is applied to all the sublocks of
c the Hessenberg matrix H and not just to the submatrix that it
c comes from. Deflation as in LAPACK routine dlahqr (QR algorithm
c for upper Hessenberg matrices ) is used.
c The subdiagonals of H are enforced to be non-negative.
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine dnapps
& ( n, kev, np, shiftr, shifti, v, ldv, h, ldh, resid, q, ldq,
& workl, workd )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer kev, ldh, ldq, ldv, n, np
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Double precision
& h(ldh,kev+np), resid(n), shifti(np), shiftr(np),
& v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
c
c %------------%
c | Parameters |
c %------------%
c
Double precision
& one, zero
parameter (one = 1.0D+0, zero = 0.0D+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
integer i, iend, ir, istart, j, jj, kplusp, msglvl, nr
logical cconj, first
Double precision
& c, f, g, h11, h12, h21, h22, h32, ovfl, r, s, sigmai,
& sigmar, smlnum, ulp, unfl, u(3), t, tau, tst1
save first, ovfl, smlnum, ulp, unfl
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external daxpy, dcopy, dscal, dlacpy, dlarfg, dlarf,
& dlaset, dlabad, arscnd, dlartg
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& dlamch, dlanhs, dlapy2
external dlamch, dlanhs, dlapy2
c
c %----------------------%
c | Intrinsics Functions |
c %----------------------%
c
intrinsic abs, max, min
c
c %----------------%
c | Data statments |
c %----------------%
c
data first / .true. /
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (first) then
c
c %-----------------------------------------------%
c | Set machine-dependent constants for the |
c | stopping criterion. If norm(H) <= sqrt(OVFL), |
c | overflow should not occur. |
c | REFERENCE: LAPACK subroutine dlahqr |
c %-----------------------------------------------%
c
unfl = dlamch( 'safe minimum' )
ovfl = one / unfl
call dlabad( unfl, ovfl )
ulp = dlamch( 'precision' )
smlnum = unfl*( n / ulp )
first = .false.
end if
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mnapps
kplusp = kev + np
c
c %--------------------------------------------%
c | Initialize Q to the identity to accumulate |
c | the rotations and reflections |
c %--------------------------------------------%
c
call dlaset ('All', kplusp, kplusp, zero, one, q, ldq)
c
c %----------------------------------------------%
c | Quick return if there are no shifts to apply |
c %----------------------------------------------%
c
if (np .eq. 0) go to 9000
c
c %----------------------------------------------%
c | Chase the bulge with the application of each |
c | implicit shift. Each shift is applied to the |
c | whole matrix including each block. |
c %----------------------------------------------%
c
cconj = .false.
do 110 jj = 1, np
sigmar = shiftr(jj)
sigmai = shifti(jj)
c
if (msglvl .gt. 2 ) then
call ivout (logfil, 1, jj, ndigit,
& '_napps: shift number.')
call dvout (logfil, 1, sigmar, ndigit,
& '_napps: The real part of the shift ')
call dvout (logfil, 1, sigmai, ndigit,
& '_napps: The imaginary part of the shift ')
end if
c
c %-------------------------------------------------%
c | The following set of conditionals is necessary |
c | in order that complex conjugate pairs of shifts |
c | are applied together or not at all. |
c %-------------------------------------------------%
c
if ( cconj ) then
c
c %-----------------------------------------%
c | cconj = .true. means the previous shift |
c | had non-zero imaginary part. |
c %-----------------------------------------%
c
cconj = .false.
go to 110
else if ( jj .lt. np .and. abs( sigmai ) .gt. zero ) then
c
c %------------------------------------%
c | Start of a complex conjugate pair. |
c %------------------------------------%
c
cconj = .true.
else if ( jj .eq. np .and. abs( sigmai ) .gt. zero ) then
c
c %----------------------------------------------%
c | The last shift has a nonzero imaginary part. |
c | Don't apply it; thus the order of the |
c | compressed H is order KEV+1 since only np-1 |
c | were applied. |
c %----------------------------------------------%
c
kev = kev + 1
go to 110
end if
istart = 1
20 continue
c
c %--------------------------------------------------%
c | if sigmai = 0 then |
c | Apply the jj-th shift ... |
c | else |
c | Apply the jj-th and (jj+1)-th together ... |
c | (Note that jj < np at this point in the code) |
c | end |
c | to the current block of H. The next do loop |
c | determines the current block ; |
c %--------------------------------------------------%
c
do 30 i = istart, kplusp-1
c
c %----------------------------------------%
c | Check for splitting and deflation. Use |
c | a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine dlahqr |
c %----------------------------------------%
c
tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
if( tst1.eq.zero )
& tst1 = dlanhs( '1', kplusp-jj+1, h, ldh, workl )
if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) then
if (msglvl .gt. 0) then
call ivout (logfil, 1, i, ndigit,
& '_napps: matrix splitting at row/column no.')
call ivout (logfil, 1, jj, ndigit,
& '_napps: matrix splitting with shift number.')
call dvout (logfil, 1, h(i+1,i), ndigit,
& '_napps: off diagonal element.')
end if
iend = i
h(i+1,i) = zero
go to 40
end if
30 continue
iend = kplusp
40 continue
c
if (msglvl .gt. 2) then
call ivout (logfil, 1, istart, ndigit,
& '_napps: Start of current block ')
call ivout (logfil, 1, iend, ndigit,
& '_napps: End of current block ')
end if
c
c %------------------------------------------------%
c | No reason to apply a shift to block of order 1 |
c %------------------------------------------------%
c
if ( istart .eq. iend ) go to 100
c
c %------------------------------------------------------%
c | If istart + 1 = iend then no reason to apply a |
c | complex conjugate pair of shifts on a 2 by 2 matrix. |
c %------------------------------------------------------%
c
if ( istart + 1 .eq. iend .and. abs( sigmai ) .gt. zero )
& go to 100
c
h11 = h(istart,istart)
h21 = h(istart+1,istart)
if ( abs( sigmai ) .le. zero ) then
c
c %---------------------------------------------%
c | Real-valued shift ==> apply single shift QR |
c %---------------------------------------------%
c
f = h11 - sigmar
g = h21
c
do 80 i = istart, iend-1
c
c %------------------------------------------------------%
c | Construct the plane rotation G to zero out the bulge |
c %------------------------------------------------------%
c
call dlartg (f, g, c, s, r)
if (i .gt. istart) then
c
c %-------------------------------------------%
c | The following ensures that h(1:iend-1,1), |
c | the first iend-2 off diagonal of elements |
c | H, remain non negative. |
c %-------------------------------------------%
c
if (r .lt. zero) then
r = -r
c = -c
s = -s
end if
h(i,i-1) = r
h(i+1,i-1) = zero
end if
c
c %---------------------------------------------%
c | Apply rotation to the left of H; H <- G'*H |
c %---------------------------------------------%
c
do 50 j = i, kplusp
t = c*h(i,j) + s*h(i+1,j)
h(i+1,j) = -s*h(i,j) + c*h(i+1,j)
h(i,j) = t
50 continue
c
c %---------------------------------------------%
c | Apply rotation to the right of H; H <- H*G |
c %---------------------------------------------%
c
do 60 j = 1, min(i+2,iend)
t = c*h(j,i) + s*h(j,i+1)
h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
h(j,i) = t
60 continue
c
c %----------------------------------------------------%
c | Accumulate the rotation in the matrix Q; Q <- Q*G |
c %----------------------------------------------------%
c
do 70 j = 1, min( i+jj, kplusp )
t = c*q(j,i) + s*q(j,i+1)
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
q(j,i) = t
70 continue
c
c %---------------------------%
c | Prepare for next rotation |
c %---------------------------%
c
if (i .lt. iend-1) then
f = h(i+1,i)
g = h(i+2,i)
end if
80 continue
c
c %-----------------------------------%
c | Finished applying the real shift. |
c %-----------------------------------%
c
else
c
c %----------------------------------------------------%
c | Complex conjugate shifts ==> apply double shift QR |
c %----------------------------------------------------%
c
h12 = h(istart,istart+1)
h22 = h(istart+1,istart+1)
h32 = h(istart+2,istart+1)
c
c %---------------------------------------------------------%
c | Compute 1st column of (H - shift*I)*(H - conj(shift)*I) |
c %---------------------------------------------------------%
c
s = 2.0*sigmar
t = dlapy2 ( sigmar, sigmai )
u(1) = ( h11 * (h11 - s) + t * t ) / h21 + h12
u(2) = h11 + h22 - s
u(3) = h32
c
do 90 i = istart, iend-1
c
nr = min ( 3, iend-i+1 )
c
c %-----------------------------------------------------%
c | Construct Householder reflector G to zero out u(1). |
c | G is of the form I - tau*( 1 u )' * ( 1 u' ). |
c %-----------------------------------------------------%
c
call dlarfg ( nr, u(1), u(2), 1, tau )
c
if (i .gt. istart) then
h(i,i-1) = u(1)
h(i+1,i-1) = zero
if (i .lt. iend-1) h(i+2,i-1) = zero
end if
u(1) = one
c
c %--------------------------------------%
c | Apply the reflector to the left of H |
c %--------------------------------------%
c
call dlarf ('Left', nr, kplusp-i+1, u, 1, tau,
& h(i,i), ldh, workl)
c
c %---------------------------------------%
c | Apply the reflector to the right of H |
c %---------------------------------------%
c
ir = min ( i+3, iend )
call dlarf ('Right', ir, nr, u, 1, tau,
& h(1,i), ldh, workl)
c
c %-----------------------------------------------------%
c | Accumulate the reflector in the matrix Q; Q <- Q*G |
c %-----------------------------------------------------%
c
call dlarf ('Right', kplusp, nr, u, 1, tau,
& q(1,i), ldq, workl)
c
c %----------------------------%
c | Prepare for next reflector |
c %----------------------------%
c
if (i .lt. iend-1) then
u(1) = h(i+1,i)
u(2) = h(i+2,i)
if (i .lt. iend-2) u(3) = h(i+3,i)
end if
c
90 continue
c
c %--------------------------------------------%
c | Finished applying a complex pair of shifts |
c | to the current block |
c %--------------------------------------------%
c
end if
c
100 continue
c
c %---------------------------------------------------------%
c | Apply the same shift to the next block if there is any. |
c %---------------------------------------------------------%
c
istart = iend + 1
if (iend .lt. kplusp) go to 20
c
c %---------------------------------------------%
c | Loop back to the top to get the next shift. |
c %---------------------------------------------%
c
110 continue
c
c %--------------------------------------------------%
c | Perform a similarity transformation that makes |
c | sure that H will have non negative sub diagonals |
c %--------------------------------------------------%
c
do 120 j=1,kev
if ( h(j+1,j) .lt. zero ) then
call dscal( kplusp-j+1, -one, h(j+1,j), ldh )
call dscal( min(j+2, kplusp), -one, h(1,j+1), 1 )
call dscal( min(j+np+1,kplusp), -one, q(1,j+1), 1 )
end if
120 continue
c
do 130 i = 1, kev
c
c %--------------------------------------------%
c | Final check for splitting and deflation. |
c | Use a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine dlahqr |
c %--------------------------------------------%
c
tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
if( tst1.eq.zero )
& tst1 = dlanhs( '1', kev, h, ldh, workl )
if( h( i+1,i ) .le. max( ulp*tst1, smlnum ) )
& h(i+1,i) = zero
130 continue
c
c %-------------------------------------------------%
c | Compute the (kev+1)-st column of (V*Q) and |
c | temporarily store the result in WORKD(N+1:2*N). |
c | This is needed in the residual update since we |
c | cannot GUARANTEE that the corresponding entry |
c | of H would be zero as in exact arithmetic. |
c %-------------------------------------------------%
c
if (h(kev+1,kev) .gt. zero)
& call dgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero,
& workd(n+1), 1)
c
c %----------------------------------------------------------%
c | Compute column 1 to kev of (V*Q) in backward order |
c | taking advantage of the upper Hessenberg structure of Q. |
c %----------------------------------------------------------%
c
do 140 i = 1, kev
call dgemv ('N', n, kplusp-i+1, one, v, ldv,
& q(1,kev-i+1), 1, zero, workd, 1)
call dcopy (n, workd, 1, v(1,kplusp-i+1), 1)
140 continue
c
c %-------------------------------------------------%
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
c %-------------------------------------------------%
c
call dlacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
c
c %--------------------------------------------------------------%
c | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
c %--------------------------------------------------------------%
c
if (h(kev+1,kev) .gt. zero)
& call dcopy (n, workd(n+1), 1, v(1,kev+1), 1)
c
c %-------------------------------------%
c | Update the residual vector: |
c | r <- sigmak*r + betak*v(:,kev+1) |
c | where |
c | sigmak = (e_{kplusp}'*Q)*e_{kev} |
c | betak = e_{kev+1}'*H*e_{kev} |
c %-------------------------------------%
c
call dscal (n, q(kplusp,kev), resid, 1)
if (h(kev+1,kev) .gt. zero)
& call daxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
c
if (msglvl .gt. 1) then
call dvout (logfil, 1, q(kplusp,kev), ndigit,
& '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
call dvout (logfil, 1, h(kev+1,kev), ndigit,
& '_napps: betak = e_{kev+1}^T*H*e_{kev}')
call ivout (logfil, 1, kev, ndigit,
& '_napps: Order of the final Hessenberg matrix ')
if (msglvl .gt. 2) then
call dmout (logfil, kev, kev, h, ldh, ndigit,
& '_napps: updated Hessenberg matrix H for next iteration')
end if
c
end if
c
9000 continue
call arscnd (t1)
tnapps = tnapps + (t1 - t0)
c
return
c
c %---------------%
c | End of dnapps |
c %---------------%
c
end
|