File: dnaup2.f

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (846 lines) | stat: -rw-r--r-- 31,888 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
c\BeginDoc
c
c\Name: dnaup2
c
c\Description:
c  Intermediate level interface called by dnaupd .
c
c\Usage:
c  call dnaup2
c     ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
c       ISHIFT, MXITER, V, LDV, H, LDH, RITZR, RITZI, BOUNDS,
c       Q, LDQ, WORKL, IPNTR, WORKD, INFO )
c
c\Arguments
c
c  IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in dnaupd .
c  MODE, ISHIFT, MXITER: see the definition of IPARAM in dnaupd .
c
c  NP      Integer.  (INPUT/OUTPUT)
c          Contains the number of implicit shifts to apply during
c          each Arnoldi iteration.
c          If ISHIFT=1, NP is adjusted dynamically at each iteration
c          to accelerate convergence and prevent stagnation.
c          This is also roughly equal to the number of matrix-vector
c          products (involving the operator OP) per Arnoldi iteration.
c          The logic for adjusting is contained within the current
c          subroutine.
c          If ISHIFT=0, NP is the number of shifts the user needs
c          to provide via reverse comunication. 0 < NP < NCV-NEV.
c          NP may be less than NCV-NEV for two reasons. The first, is
c          to keep complex conjugate pairs of "wanted" Ritz values
c          together. The second, is that a leading block of the current
c          upper Hessenberg matrix has split off and contains "unwanted"
c          Ritz values.
c          Upon termination of the IRA iteration, NP contains the number
c          of "converged" wanted Ritz values.
c
c  IUPD    Integer.  (INPUT)
c          IUPD .EQ. 0: use explicit restart instead implicit update.
c          IUPD .NE. 0: use implicit update.
c
c  V       Double precision  N by (NEV+NP) array.  (INPUT/OUTPUT)
c          The Arnoldi basis vectors are returned in the first NEV
c          columns of V.
c
c  LDV     Integer.  (INPUT)
c          Leading dimension of V exactly as declared in the calling
c          program.
c
c  H       Double precision  (NEV+NP) by (NEV+NP) array.  (OUTPUT)
c          H is used to store the generated upper Hessenberg matrix
c
c  LDH     Integer.  (INPUT)
c          Leading dimension of H exactly as declared in the calling
c          program.
c
c  RITZR,  Double precision  arrays of length NEV+NP.  (OUTPUT)
c  RITZI   RITZR(1:NEV) (resp. RITZI(1:NEV)) contains the real (resp.
c          imaginary) part of the computed Ritz values of OP.
c
c  BOUNDS  Double precision  array of length NEV+NP.  (OUTPUT)
c          BOUNDS(1:NEV) contain the error bounds corresponding to
c          the computed Ritz values.
c
c  Q       Double precision  (NEV+NP) by (NEV+NP) array.  (WORKSPACE)
c          Private (replicated) work array used to accumulate the
c          rotation in the shift application step.
c
c  LDQ     Integer.  (INPUT)
c          Leading dimension of Q exactly as declared in the calling
c          program.
c
c  WORKL   Double precision  work array of length at least
c          (NEV+NP)**2 + 3*(NEV+NP).  (INPUT/WORKSPACE)
c          Private (replicated) array on each PE or array allocated on
c          the front end.  It is used in shifts calculation, shifts
c          application and convergence checking.
c
c          On exit, the last 3*(NEV+NP) locations of WORKL contain
c          the Ritz values (real,imaginary) and associated Ritz
c          estimates of the current Hessenberg matrix.  They are
c          listed in the same order as returned from dneigh .
c
c          If ISHIFT .EQ. O and IDO .EQ. 3, the first 2*NP locations
c          of WORKL are used in reverse communication to hold the user
c          supplied shifts.
c
c  IPNTR   Integer array of length 3.  (OUTPUT)
c          Pointer to mark the starting locations in the WORKD for
c          vectors used by the Arnoldi iteration.
c          -------------------------------------------------------------
c          IPNTR(1): pointer to the current operand vector X.
c          IPNTR(2): pointer to the current result vector Y.
c          IPNTR(3): pointer to the vector B * X when used in the
c                    shift-and-invert mode.  X is the current operand.
c          -------------------------------------------------------------
c
c  WORKD   Double precision  work array of length 3*N.  (WORKSPACE)
c          Distributed array to be used in the basic Arnoldi iteration
c          for reverse communication.  The user should not use WORKD
c          as temporary workspace during the iteration !!!!!!!!!!
c          See Data Distribution Note in DNAUPD.
c
c  INFO    Integer.  (INPUT/OUTPUT)
c          If INFO .EQ. 0, a randomly initial residual vector is used.
c          If INFO .NE. 0, RESID contains the initial residual vector,
c                          possibly from a previous run.
c          Error flag on output.
c          =     0: Normal return.
c          =     1: Maximum number of iterations taken.
c                   All possible eigenvalues of OP has been found.
c                   NP returns the number of converged Ritz values.
c          =     2: No shifts could be applied.
c          =    -8: Error return from LAPACK eigenvalue calculation;
c                   This should never happen.
c          =    -9: Starting vector is zero.
c          = -9999: Could not build an Arnoldi factorization.
c                   Size that was built in returned in NP.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c     xxxxxx  real
c
c\References:
c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c     pp 357-385.
c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c     Restarted Arnoldi Iteration", Rice University Technical Report
c     TR95-13, Department of Computational and Applied Mathematics.
c
c\Routines called:
c     dgetv0   ARPACK initial vector generation routine.
c     dnaitr   ARPACK Arnoldi factorization routine.
c     dnapps   ARPACK application of implicit shifts routine.
c     dnconv   ARPACK convergence of Ritz values routine.
c     dneigh   ARPACK compute Ritz values and error bounds routine.
c     dngets   ARPACK reorder Ritz values and error bounds routine.
c     dsortc   ARPACK sorting routine.
c     ivout   ARPACK utility routine that prints integers.
c     arscnd  ARPACK utility routine for timing.
c     dmout    ARPACK utility routine that prints matrices
c     dvout    ARPACK utility routine that prints vectors.
c     dlamch   LAPACK routine that determines machine constants.
c     dlapy2   LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     dcopy    Level 1 BLAS that copies one vector to another .
c     ddot     Level 1 BLAS that computes the scalar product of two vectors.
c     dnrm2    Level 1 BLAS that computes the norm of a vector.
c     dswap    Level 1 BLAS that swaps two vectors.
c
c\Author
c     Danny Sorensen               Phuong Vu
c     Richard Lehoucq              CRPC / Rice University
c     Dept. of Computational &     Houston, Texas
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: naup2.F   SID: 2.8   DATE OF SID: 10/17/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
      subroutine dnaup2
     &   ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd,
     &     ishift, mxiter, v, ldv, h, ldh, ritzr, ritzi, bounds,
     &     q, ldq, workl, ipntr, workd, info )
c
c     %----------------------------------------------------%
c     | Include files for debugging and timing information |
c     %----------------------------------------------------%
c
      include   'debug.h'
      include   'stat.h'
c
c     %------------------%
c     | Scalar Arguments |
c     %------------------%
c
      character  bmat*1, which*2
      integer    ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter,
     &           n, nev, np
      Double precision
     &           tol
c
c     %-----------------%
c     | Array Arguments |
c     %-----------------%
c
      integer    ipntr(13)
      Double precision
     &           bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), resid(n),
     &           ritzi(nev+np), ritzr(nev+np), v(ldv,nev+np),
     &           workd(3*n), workl( (nev+np)*(nev+np+3) )
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &           one, zero
      parameter (one = 1.0D+0 , zero = 0.0D+0 )
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character  wprime*2
      logical    cnorm , getv0, initv, update, ushift
      integer    ierr  , iter , j    , kplusp, msglvl, nconv,
     &           nevbef, nev0 , np0  , nptemp, numcnv
      Double precision
     &           rnorm , temp , eps23
      save       cnorm , getv0, initv, update, ushift,
     &           rnorm , iter , eps23, kplusp, msglvl, nconv ,
     &           nevbef, nev0 , np0  , numcnv
c
c     %-----------------------%
c     | Local array arguments |
c     %-----------------------%
c
      integer    kp(4)
c
c     %----------------------%
c     | External Subroutines |
c     %----------------------%
c
      external   dcopy  , dgetv0 , dnaitr , dnconv , dneigh ,
     &           dngets , dnapps , dvout  , ivout , arscnd
c
c     %--------------------%
c     | External Functions |
c     %--------------------%
c
      Double precision
     &           ddot , dnrm2 , dlapy2 , dlamch
      external   ddot , dnrm2 , dlapy2 , dlamch
c
c     %---------------------%
c     | Intrinsic Functions |
c     %---------------------%
c
      intrinsic    min, max, abs, sqrt
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
      if (ido .eq. 0) then
c
         call arscnd (t0)
c
         msglvl = mnaup2
c
c        %-------------------------------------%
c        | Get the machine dependent constant. |
c        %-------------------------------------%
c
         eps23 = dlamch ('Epsilon-Machine')
         eps23 = eps23**(2.0D+0  / 3.0D+0 )
c
         nev0   = nev
         np0    = np
c
c        %-------------------------------------%
c        | kplusp is the bound on the largest  |
c        |        Lanczos factorization built. |
c        | nconv is the current number of      |
c        |        "converged" eigenvlues.      |
c        | iter is the counter on the current  |
c        |      iteration step.                |
c        %-------------------------------------%
c
         kplusp = nev + np
         nconv  = 0
         iter   = 0
c
c        %---------------------------------------%
c        | Set flags for computing the first NEV |
c        | steps of the Arnoldi factorization.   |
c        %---------------------------------------%
c
         getv0    = .true.
         update   = .false.
         ushift   = .false.
         cnorm    = .false.
c
         if (info .ne. 0) then
c
c           %--------------------------------------------%
c           | User provides the initial residual vector. |
c           %--------------------------------------------%
c
            initv = .true.
            info  = 0
         else
            initv = .false.
         end if
      end if
c
c     %---------------------------------------------%
c     | Get a possibly random starting vector and   |
c     | force it into the range of the operator OP. |
c     %---------------------------------------------%
c
   10 continue
c
      if (getv0) then
         call dgetv0  (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
     &                ipntr, workd, info)
c
         if (ido .ne. 99) go to 9000
c
         if (rnorm .eq. zero) then
c
c           %-----------------------------------------%
c           | The initial vector is zero. Error exit. |
c           %-----------------------------------------%
c
            info = -9
            go to 1100
         end if
         getv0 = .false.
         ido  = 0
      end if
c
c     %-----------------------------------%
c     | Back from reverse communication : |
c     | continue with update step         |
c     %-----------------------------------%
c
      if (update) go to 20
c
c     %-------------------------------------------%
c     | Back from computing user specified shifts |
c     %-------------------------------------------%
c
      if (ushift) go to 50
c
c     %-------------------------------------%
c     | Back from computing residual norm   |
c     | at the end of the current iteration |
c     %-------------------------------------%
c
      if (cnorm)  go to 100
c
c     %----------------------------------------------------------%
c     | Compute the first NEV steps of the Arnoldi factorization |
c     %----------------------------------------------------------%
c
      call dnaitr  (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv,
     &             h, ldh, ipntr, workd, info)
c
c     %---------------------------------------------------%
c     | ido .ne. 99 implies use of reverse communication  |
c     | to compute operations involving OP and possibly B |
c     %---------------------------------------------------%
c
      if (ido .ne. 99) go to 9000
c
      if (info .gt. 0) then
         np   = info
         mxiter = iter
         info = -9999
         go to 1200
      end if
c
c     %--------------------------------------------------------------%
c     |                                                              |
c     |           M A I N  ARNOLDI  I T E R A T I O N  L O O P       |
c     |           Each iteration implicitly restarts the Arnoldi     |
c     |           factorization in place.                            |
c     |                                                              |
c     %--------------------------------------------------------------%
c
 1000 continue
c
         iter = iter + 1
c
         if (msglvl .gt. 0) then
            call ivout (logfil, 1, iter, ndigit,
     &           '_naup2: **** Start of major iteration number ****')
         end if
c
c        %-----------------------------------------------------------%
c        | Compute NP additional steps of the Arnoldi factorization. |
c        | Adjust NP since NEV might have been updated by last call  |
c        | to the shift application routine dnapps .                  |
c        %-----------------------------------------------------------%
c
         np  = kplusp - nev
c
         if (msglvl .gt. 1) then
            call ivout (logfil, 1, nev, ndigit,
     &     '_naup2: The length of the current Arnoldi factorization')
            call ivout (logfil, 1, np, ndigit,
     &           '_naup2: Extend the Arnoldi factorization by')
         end if
c
c        %-----------------------------------------------------------%
c        | Compute NP additional steps of the Arnoldi factorization. |
c        %-----------------------------------------------------------%
c
         ido = 0
   20    continue
         update = .true.
c
         call dnaitr  (ido  , bmat, n  , nev, np , mode , resid,
     &                rnorm, v   , ldv, h  , ldh, ipntr, workd,
     &                info)
c
c        %---------------------------------------------------%
c        | ido .ne. 99 implies use of reverse communication  |
c        | to compute operations involving OP and possibly B |
c        %---------------------------------------------------%
c
         if (ido .ne. 99) go to 9000
c
         if (info .gt. 0) then
            np = info
            mxiter = iter
            info = -9999
            go to 1200
         end if
         update = .false.
c
         if (msglvl .gt. 1) then
            call dvout  (logfil, 1, rnorm, ndigit,
     &           '_naup2: Corresponding B-norm of the residual')
         end if
c
c        %--------------------------------------------------------%
c        | Compute the eigenvalues and corresponding error bounds |
c        | of the current upper Hessenberg matrix.                |
c        %--------------------------------------------------------%
c
         call dneigh  (rnorm, kplusp, h, ldh, ritzr, ritzi, bounds,
     &                q, ldq, workl, ierr)
c
         if (ierr .ne. 0) then
            info = -8
            go to 1200
         end if
c
c        %----------------------------------------------------%
c        | Make a copy of eigenvalues and corresponding error |
c        | bounds obtained from dneigh .                       |
c        %----------------------------------------------------%
c
         call dcopy (kplusp, ritzr, 1, workl(kplusp**2+1), 1)
         call dcopy (kplusp, ritzi, 1, workl(kplusp**2+kplusp+1), 1)
         call dcopy (kplusp, bounds, 1, workl(kplusp**2+2*kplusp+1), 1)
c
c        %---------------------------------------------------%
c        | Select the wanted Ritz values and their bounds    |
c        | to be used in the convergence test.               |
c        | The wanted part of the spectrum and corresponding |
c        | error bounds are in the last NEV loc. of RITZR,   |
c        | RITZI and BOUNDS respectively. The variables NEV  |
c        | and NP may be updated if the NEV-th wanted Ritz   |
c        | value has a non zero imaginary part. In this case |
c        | NEV is increased by one and NP decreased by one.  |
c        | NOTE: The last two arguments of dngets  are no     |
c        | longer used as of version 2.1.                    |
c        %---------------------------------------------------%
c
         nev = nev0
         np = np0
         numcnv = nev
         call dngets  (ishift, which, nev, np, ritzr, ritzi,
     &                bounds, workl, workl(np+1))
         if (nev .eq. nev0+1) numcnv = nev0+1
c
c        %-------------------%
c        | Convergence test. |
c        %-------------------%
c
         call dcopy  (nev, bounds(np+1), 1, workl(2*np+1), 1)
         call dnconv  (nev, ritzr(np+1), ritzi(np+1), workl(2*np+1),
     &        tol, nconv)
c
         if (msglvl .gt. 2) then
            kp(1) = nev
            kp(2) = np
            kp(3) = numcnv
            kp(4) = nconv
            call ivout (logfil, 4, kp, ndigit,
     &                  '_naup2: NEV, NP, NUMCNV, NCONV are')
            call dvout  (logfil, kplusp, ritzr, ndigit,
     &           '_naup2: Real part of the eigenvalues of H')
            call dvout  (logfil, kplusp, ritzi, ndigit,
     &           '_naup2: Imaginary part of the eigenvalues of H')
            call dvout  (logfil, kplusp, bounds, ndigit,
     &          '_naup2: Ritz estimates of the current NCV Ritz values')
         end if
c
c        %---------------------------------------------------------%
c        | Count the number of unwanted Ritz values that have zero |
c        | Ritz estimates. If any Ritz estimates are equal to zero |
c        | then a leading block of H of order equal to at least    |
c        | the number of Ritz values with zero Ritz estimates has  |
c        | split off. None of these Ritz values may be removed by  |
c        | shifting. Decrease NP the number of shifts to apply. If |
c        | no shifts may be applied, then prepare to exit          |
c        %---------------------------------------------------------%
c
         nptemp = np
         do 30 j=1, nptemp
            if (bounds(j) .eq. zero) then
               np = np - 1
               nev = nev + 1
            end if
 30      continue
c
         if ( (nconv .ge. numcnv) .or.
     &        (iter .gt. mxiter) .or.
     &        (np .eq. 0) ) then
c
            if (msglvl .gt. 4) then
               call dvout (logfil, kplusp, workl(kplusp**2+1), ndigit,
     &             '_naup2: Real part of the eig computed by _neigh:')
               call dvout (logfil, kplusp, workl(kplusp**2+kplusp+1),
     &                     ndigit,
     &             '_naup2: Imag part of the eig computed by _neigh:')
               call dvout (logfil, kplusp, workl(kplusp**2+kplusp*2+1),
     &                     ndigit,
     &             '_naup2: Ritz eistmates computed by _neigh:')
            end if
c
c           %------------------------------------------------%
c           | Prepare to exit. Put the converged Ritz values |
c           | and corresponding bounds in RITZ(1:NCONV) and  |
c           | BOUNDS(1:NCONV) respectively. Then sort. Be    |
c           | careful when NCONV > NP                        |
c           %------------------------------------------------%
c
c           %------------------------------------------%
c           |  Use h( 3,1 ) as storage to communicate  |
c           |  rnorm to _neupd if needed               |
c           %------------------------------------------%

            h(3,1) = rnorm
c
c           %----------------------------------------------%
c           | To be consistent with dngets , we first do a  |
c           | pre-processing sort in order to keep complex |
c           | conjugate pairs together.  This is similar   |
c           | to the pre-processing sort used in dngets     |
c           | except that the sort is done in the opposite |
c           | order.                                       |
c           %----------------------------------------------%
c
            if (which .eq. 'LM') wprime = 'SR'
            if (which .eq. 'SM') wprime = 'LR'
            if (which .eq. 'LR') wprime = 'SM'
            if (which .eq. 'SR') wprime = 'LM'
            if (which .eq. 'LI') wprime = 'SM'
            if (which .eq. 'SI') wprime = 'LM'
c
            call dsortc  (wprime, .true., kplusp, ritzr, ritzi, bounds)
c
c           %----------------------------------------------%
c           | Now sort Ritz values so that converged Ritz  |
c           | values appear within the first NEV locations |
c           | of ritzr, ritzi and bounds, and the most     |
c           | desired one appears at the front.            |
c           %----------------------------------------------%
c
            if (which .eq. 'LM') wprime = 'SM'
            if (which .eq. 'SM') wprime = 'LM'
            if (which .eq. 'LR') wprime = 'SR'
            if (which .eq. 'SR') wprime = 'LR'
            if (which .eq. 'LI') wprime = 'SI'
            if (which .eq. 'SI') wprime = 'LI'
c
            call dsortc (wprime, .true., kplusp, ritzr, ritzi, bounds)
c
c           %--------------------------------------------------%
c           | Scale the Ritz estimate of each Ritz value       |
c           | by 1 / max(eps23,magnitude of the Ritz value).   |
c           %--------------------------------------------------%
c
            do 35 j = 1, numcnv
                temp = max(eps23,dlapy2 (ritzr(j),
     &                                   ritzi(j)))
                bounds(j) = bounds(j)/temp
 35         continue
c
c           %----------------------------------------------------%
c           | Sort the Ritz values according to the scaled Ritz  |
c           | esitmates.  This will push all the converged ones  |
c           | towards the front of ritzr, ritzi, bounds          |
c           | (in the case when NCONV < NEV.)                    |
c           %----------------------------------------------------%
c
            wprime = 'LR'
            call dsortc (wprime, .true., numcnv, bounds, ritzr, ritzi)
c
c           %----------------------------------------------%
c           | Scale the Ritz estimate back to its original |
c           | value.                                       |
c           %----------------------------------------------%
c
            do 40 j = 1, numcnv
                temp = max(eps23, dlapy2 (ritzr(j),
     &                                   ritzi(j)))
                bounds(j) = bounds(j)*temp
 40         continue
c
c           %------------------------------------------------%
c           | Sort the converged Ritz values again so that   |
c           | the "threshold" value appears at the front of  |
c           | ritzr, ritzi and bound.                        |
c           %------------------------------------------------%
c
            call dsortc (which, .true., nconv, ritzr, ritzi, bounds)
c
            if (msglvl .gt. 1) then
               call dvout  (logfil, kplusp, ritzr, ndigit,
     &            '_naup2: Sorted real part of the eigenvalues')
               call dvout  (logfil, kplusp, ritzi, ndigit,
     &            '_naup2: Sorted imaginary part of the eigenvalues')
               call dvout  (logfil, kplusp, bounds, ndigit,
     &            '_naup2: Sorted ritz estimates.')
            end if
c
c           %------------------------------------%
c           | Max iterations have been exceeded. |
c           %------------------------------------%
c
            if (iter .gt. mxiter .and. nconv .lt. numcnv) info = 1
c
c           %---------------------%
c           | No shifts to apply. |
c           %---------------------%
c
            if (np .eq. 0 .and. nconv .lt. numcnv) info = 2
c
            np = nconv
            go to 1100
c
         else if ( (nconv .lt. numcnv) .and. (ishift .eq. 1) ) then
c
c           %-------------------------------------------------%
c           | Do not have all the requested eigenvalues yet.  |
c           | To prevent possible stagnation, adjust the size |
c           | of NEV.                                         |
c           %-------------------------------------------------%
c
            nevbef = nev
            nev = nev + min(nconv, np/2)
            if (nev .eq. 1 .and. kplusp .ge. 6) then
               nev = kplusp / 2
            else if (nev .eq. 1 .and. kplusp .gt. 3) then
               nev = 2
            end if
c           %---- Scipy fix ------------------------------------------------
c           | We must keep nev below this value, as otherwise we can get
c           | np == 0 (note that dngets below can bump nev by 1). If np == 0,
c           | the next call to `dnaitr` will write out-of-bounds.
c           |
            if (nev .gt. kplusp - 2) then
               nev = kplusp - 2
            end if
c           |
c           %---- Scipy fix end --------------------------------------------
c
            np = kplusp - nev
c
c           %---------------------------------------%
c           | If the size of NEV was just increased |
c           | resort the eigenvalues.               |
c           %---------------------------------------%
c
            if (nevbef .lt. nev)
     &         call dngets  (ishift, which, nev, np, ritzr, ritzi,
     &              bounds, workl, workl(np+1))
c
         end if
c
         if (msglvl .gt. 0) then
            call ivout (logfil, 1, nconv, ndigit,
     &           '_naup2: no. of "converged" Ritz values at this iter.')
            if (msglvl .gt. 1) then
               kp(1) = nev
               kp(2) = np
               call ivout (logfil, 2, kp, ndigit,
     &              '_naup2: NEV and NP are')
               call dvout  (logfil, nev, ritzr(np+1), ndigit,
     &              '_naup2: "wanted" Ritz values -- real part')
               call dvout  (logfil, nev, ritzi(np+1), ndigit,
     &              '_naup2: "wanted" Ritz values -- imag part')
               call dvout  (logfil, nev, bounds(np+1), ndigit,
     &              '_naup2: Ritz estimates of the "wanted" values ')
            end if
         end if
c
         if (ishift .eq. 0) then
c
c           %-------------------------------------------------------%
c           | User specified shifts: reverse comminucation to       |
c           | compute the shifts. They are returned in the first    |
c           | 2*NP locations of WORKL.                              |
c           %-------------------------------------------------------%
c
            ushift = .true.
            ido = 3
            go to 9000
         end if
c
   50    continue
c
c        %------------------------------------%
c        | Back from reverse communication;   |
c        | User specified shifts are returned |
c        | in WORKL(1:2*NP)                   |
c        %------------------------------------%
c
         ushift = .false.
c
         if ( ishift .eq. 0 ) then
c
c            %----------------------------------%
c            | Move the NP shifts from WORKL to |
c            | RITZR, RITZI to free up WORKL    |
c            | for non-exact shift case.        |
c            %----------------------------------%
c
             call dcopy  (np, workl,       1, ritzr, 1)
             call dcopy  (np, workl(np+1), 1, ritzi, 1)
         end if
c
         if (msglvl .gt. 2) then
            call ivout (logfil, 1, np, ndigit,
     &                  '_naup2: The number of shifts to apply ')
            call dvout  (logfil, np, ritzr, ndigit,
     &                  '_naup2: Real part of the shifts')
            call dvout  (logfil, np, ritzi, ndigit,
     &                  '_naup2: Imaginary part of the shifts')
            if ( ishift .eq. 1 )
     &          call dvout  (logfil, np, bounds, ndigit,
     &                  '_naup2: Ritz estimates of the shifts')
         end if
c
c        %---------------------------------------------------------%
c        | Apply the NP implicit shifts by QR bulge chasing.       |
c        | Each shift is applied to the whole upper Hessenberg     |
c        | matrix H.                                               |
c        | The first 2*N locations of WORKD are used as workspace. |
c        %---------------------------------------------------------%
c
         call dnapps  (n, nev, np, ritzr, ritzi, v, ldv,
     &                h, ldh, resid, q, ldq, workl, workd)
c
c        %---------------------------------------------%
c        | Compute the B-norm of the updated residual. |
c        | Keep B*RESID in WORKD(1:N) to be used in    |
c        | the first step of the next call to dnaitr .  |
c        %---------------------------------------------%
c
         cnorm = .true.
         call arscnd (t2)
         if (bmat .eq. 'G') then
            nbx = nbx + 1
            call dcopy  (n, resid, 1, workd(n+1), 1)
            ipntr(1) = n + 1
            ipntr(2) = 1
            ido = 2
c
c           %----------------------------------%
c           | Exit in order to compute B*RESID |
c           %----------------------------------%
c
            go to 9000
         else if (bmat .eq. 'I') then
            call dcopy  (n, resid, 1, workd, 1)
         end if
c
  100    continue
c
c        %----------------------------------%
c        | Back from reverse communication; |
c        | WORKD(1:N) := B*RESID            |
c        %----------------------------------%
c
         if (bmat .eq. 'G') then
            call arscnd (t3)
            tmvbx = tmvbx + (t3 - t2)
         end if
c
         if (bmat .eq. 'G') then
            rnorm = ddot  (n, resid, 1, workd, 1)
            rnorm = sqrt(abs(rnorm))
         else if (bmat .eq. 'I') then
            rnorm = dnrm2 (n, resid, 1)
         end if
         cnorm = .false.
c
         if (msglvl .gt. 2) then
            call dvout  (logfil, 1, rnorm, ndigit,
     &      '_naup2: B-norm of residual for compressed factorization')
            call dmout  (logfil, nev, nev, h, ldh, ndigit,
     &        '_naup2: Compressed upper Hessenberg matrix H')
         end if
c
      go to 1000
c
c     %---------------------------------------------------------------%
c     |                                                               |
c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
c     |                                                               |
c     %---------------------------------------------------------------%
c
 1100 continue
c
      mxiter = iter
      nev = numcnv
c
 1200 continue
      ido = 99
c
c     %------------%
c     | Error Exit |
c     %------------%
c
      call arscnd (t1)
      tnaup2 = t1 - t0
c
 9000 continue
c
c     %---------------%
c     | End of dnaup2  |
c     %---------------%
c
      return
      end