1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
|
c\BeginDoc
c
c\Name: dnaup2
c
c\Description:
c Intermediate level interface called by dnaupd .
c
c\Usage:
c call dnaup2
c ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
c ISHIFT, MXITER, V, LDV, H, LDH, RITZR, RITZI, BOUNDS,
c Q, LDQ, WORKL, IPNTR, WORKD, INFO )
c
c\Arguments
c
c IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in dnaupd .
c MODE, ISHIFT, MXITER: see the definition of IPARAM in dnaupd .
c
c NP Integer. (INPUT/OUTPUT)
c Contains the number of implicit shifts to apply during
c each Arnoldi iteration.
c If ISHIFT=1, NP is adjusted dynamically at each iteration
c to accelerate convergence and prevent stagnation.
c This is also roughly equal to the number of matrix-vector
c products (involving the operator OP) per Arnoldi iteration.
c The logic for adjusting is contained within the current
c subroutine.
c If ISHIFT=0, NP is the number of shifts the user needs
c to provide via reverse comunication. 0 < NP < NCV-NEV.
c NP may be less than NCV-NEV for two reasons. The first, is
c to keep complex conjugate pairs of "wanted" Ritz values
c together. The second, is that a leading block of the current
c upper Hessenberg matrix has split off and contains "unwanted"
c Ritz values.
c Upon termination of the IRA iteration, NP contains the number
c of "converged" wanted Ritz values.
c
c IUPD Integer. (INPUT)
c IUPD .EQ. 0: use explicit restart instead implicit update.
c IUPD .NE. 0: use implicit update.
c
c V Double precision N by (NEV+NP) array. (INPUT/OUTPUT)
c The Arnoldi basis vectors are returned in the first NEV
c columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Double precision (NEV+NP) by (NEV+NP) array. (OUTPUT)
c H is used to store the generated upper Hessenberg matrix
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RITZR, Double precision arrays of length NEV+NP. (OUTPUT)
c RITZI RITZR(1:NEV) (resp. RITZI(1:NEV)) contains the real (resp.
c imaginary) part of the computed Ritz values of OP.
c
c BOUNDS Double precision array of length NEV+NP. (OUTPUT)
c BOUNDS(1:NEV) contain the error bounds corresponding to
c the computed Ritz values.
c
c Q Double precision (NEV+NP) by (NEV+NP) array. (WORKSPACE)
c Private (replicated) work array used to accumulate the
c rotation in the shift application step.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Double precision work array of length at least
c (NEV+NP)**2 + 3*(NEV+NP). (INPUT/WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end. It is used in shifts calculation, shifts
c application and convergence checking.
c
c On exit, the last 3*(NEV+NP) locations of WORKL contain
c the Ritz values (real,imaginary) and associated Ritz
c estimates of the current Hessenberg matrix. They are
c listed in the same order as returned from dneigh .
c
c If ISHIFT .EQ. O and IDO .EQ. 3, the first 2*NP locations
c of WORKL are used in reverse communication to hold the user
c supplied shifts.
c
c IPNTR Integer array of length 3. (OUTPUT)
c Pointer to mark the starting locations in the WORKD for
c vectors used by the Arnoldi iteration.
c -------------------------------------------------------------
c IPNTR(1): pointer to the current operand vector X.
c IPNTR(2): pointer to the current result vector Y.
c IPNTR(3): pointer to the vector B * X when used in the
c shift-and-invert mode. X is the current operand.
c -------------------------------------------------------------
c
c WORKD Double precision work array of length 3*N. (WORKSPACE)
c Distributed array to be used in the basic Arnoldi iteration
c for reverse communication. The user should not use WORKD
c as temporary workspace during the iteration !!!!!!!!!!
c See Data Distribution Note in DNAUPD.
c
c INFO Integer. (INPUT/OUTPUT)
c If INFO .EQ. 0, a randomly initial residual vector is used.
c If INFO .NE. 0, RESID contains the initial residual vector,
c possibly from a previous run.
c Error flag on output.
c = 0: Normal return.
c = 1: Maximum number of iterations taken.
c All possible eigenvalues of OP has been found.
c NP returns the number of converged Ritz values.
c = 2: No shifts could be applied.
c = -8: Error return from LAPACK eigenvalue calculation;
c This should never happen.
c = -9: Starting vector is zero.
c = -9999: Could not build an Arnoldi factorization.
c Size that was built in returned in NP.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Rice University Technical Report
c TR95-13, Department of Computational and Applied Mathematics.
c
c\Routines called:
c dgetv0 ARPACK initial vector generation routine.
c dnaitr ARPACK Arnoldi factorization routine.
c dnapps ARPACK application of implicit shifts routine.
c dnconv ARPACK convergence of Ritz values routine.
c dneigh ARPACK compute Ritz values and error bounds routine.
c dngets ARPACK reorder Ritz values and error bounds routine.
c dsortc ARPACK sorting routine.
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c dmout ARPACK utility routine that prints matrices
c dvout ARPACK utility routine that prints vectors.
c dlamch LAPACK routine that determines machine constants.
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c dcopy Level 1 BLAS that copies one vector to another .
c ddot Level 1 BLAS that computes the scalar product of two vectors.
c dnrm2 Level 1 BLAS that computes the norm of a vector.
c dswap Level 1 BLAS that swaps two vectors.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: naup2.F SID: 2.8 DATE OF SID: 10/17/00 RELEASE: 2
c
c\Remarks
c 1. None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine dnaup2
& ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd,
& ishift, mxiter, v, ldv, h, ldh, ritzr, ritzi, bounds,
& q, ldq, workl, ipntr, workd, info )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character bmat*1, which*2
integer ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter,
& n, nev, np
Double precision
& tol
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
integer ipntr(13)
Double precision
& bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), resid(n),
& ritzi(nev+np), ritzr(nev+np), v(ldv,nev+np),
& workd(3*n), workl( (nev+np)*(nev+np+3) )
c
c %------------%
c | Parameters |
c %------------%
c
Double precision
& one, zero
parameter (one = 1.0D+0 , zero = 0.0D+0 )
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character wprime*2
logical cnorm , getv0, initv, update, ushift
integer ierr , iter , j , kplusp, msglvl, nconv,
& nevbef, nev0 , np0 , nptemp, numcnv
Double precision
& rnorm , temp , eps23
save cnorm , getv0, initv, update, ushift,
& rnorm , iter , eps23, kplusp, msglvl, nconv ,
& nevbef, nev0 , np0 , numcnv
c
c %-----------------------%
c | Local array arguments |
c %-----------------------%
c
integer kp(4)
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external dcopy , dgetv0 , dnaitr , dnconv , dneigh ,
& dngets , dnapps , dvout , ivout , arscnd
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& ddot , dnrm2 , dlapy2 , dlamch
external ddot , dnrm2 , dlapy2 , dlamch
c
c %---------------------%
c | Intrinsic Functions |
c %---------------------%
c
intrinsic min, max, abs, sqrt
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (ido .eq. 0) then
c
call arscnd (t0)
c
msglvl = mnaup2
c
c %-------------------------------------%
c | Get the machine dependent constant. |
c %-------------------------------------%
c
eps23 = dlamch ('Epsilon-Machine')
eps23 = eps23**(2.0D+0 / 3.0D+0 )
c
nev0 = nev
np0 = np
c
c %-------------------------------------%
c | kplusp is the bound on the largest |
c | Lanczos factorization built. |
c | nconv is the current number of |
c | "converged" eigenvlues. |
c | iter is the counter on the current |
c | iteration step. |
c %-------------------------------------%
c
kplusp = nev + np
nconv = 0
iter = 0
c
c %---------------------------------------%
c | Set flags for computing the first NEV |
c | steps of the Arnoldi factorization. |
c %---------------------------------------%
c
getv0 = .true.
update = .false.
ushift = .false.
cnorm = .false.
c
if (info .ne. 0) then
c
c %--------------------------------------------%
c | User provides the initial residual vector. |
c %--------------------------------------------%
c
initv = .true.
info = 0
else
initv = .false.
end if
end if
c
c %---------------------------------------------%
c | Get a possibly random starting vector and |
c | force it into the range of the operator OP. |
c %---------------------------------------------%
c
10 continue
c
if (getv0) then
call dgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
& ipntr, workd, info)
c
if (ido .ne. 99) go to 9000
c
if (rnorm .eq. zero) then
c
c %-----------------------------------------%
c | The initial vector is zero. Error exit. |
c %-----------------------------------------%
c
info = -9
go to 1100
end if
getv0 = .false.
ido = 0
end if
c
c %-----------------------------------%
c | Back from reverse communication : |
c | continue with update step |
c %-----------------------------------%
c
if (update) go to 20
c
c %-------------------------------------------%
c | Back from computing user specified shifts |
c %-------------------------------------------%
c
if (ushift) go to 50
c
c %-------------------------------------%
c | Back from computing residual norm |
c | at the end of the current iteration |
c %-------------------------------------%
c
if (cnorm) go to 100
c
c %----------------------------------------------------------%
c | Compute the first NEV steps of the Arnoldi factorization |
c %----------------------------------------------------------%
c
call dnaitr (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv,
& h, ldh, ipntr, workd, info)
c
c %---------------------------------------------------%
c | ido .ne. 99 implies use of reverse communication |
c | to compute operations involving OP and possibly B |
c %---------------------------------------------------%
c
if (ido .ne. 99) go to 9000
c
if (info .gt. 0) then
np = info
mxiter = iter
info = -9999
go to 1200
end if
c
c %--------------------------------------------------------------%
c | |
c | M A I N ARNOLDI I T E R A T I O N L O O P |
c | Each iteration implicitly restarts the Arnoldi |
c | factorization in place. |
c | |
c %--------------------------------------------------------------%
c
1000 continue
c
iter = iter + 1
c
if (msglvl .gt. 0) then
call ivout (logfil, 1, iter, ndigit,
& '_naup2: **** Start of major iteration number ****')
end if
c
c %-----------------------------------------------------------%
c | Compute NP additional steps of the Arnoldi factorization. |
c | Adjust NP since NEV might have been updated by last call |
c | to the shift application routine dnapps . |
c %-----------------------------------------------------------%
c
np = kplusp - nev
c
if (msglvl .gt. 1) then
call ivout (logfil, 1, nev, ndigit,
& '_naup2: The length of the current Arnoldi factorization')
call ivout (logfil, 1, np, ndigit,
& '_naup2: Extend the Arnoldi factorization by')
end if
c
c %-----------------------------------------------------------%
c | Compute NP additional steps of the Arnoldi factorization. |
c %-----------------------------------------------------------%
c
ido = 0
20 continue
update = .true.
c
call dnaitr (ido , bmat, n , nev, np , mode , resid,
& rnorm, v , ldv, h , ldh, ipntr, workd,
& info)
c
c %---------------------------------------------------%
c | ido .ne. 99 implies use of reverse communication |
c | to compute operations involving OP and possibly B |
c %---------------------------------------------------%
c
if (ido .ne. 99) go to 9000
c
if (info .gt. 0) then
np = info
mxiter = iter
info = -9999
go to 1200
end if
update = .false.
c
if (msglvl .gt. 1) then
call dvout (logfil, 1, rnorm, ndigit,
& '_naup2: Corresponding B-norm of the residual')
end if
c
c %--------------------------------------------------------%
c | Compute the eigenvalues and corresponding error bounds |
c | of the current upper Hessenberg matrix. |
c %--------------------------------------------------------%
c
call dneigh (rnorm, kplusp, h, ldh, ritzr, ritzi, bounds,
& q, ldq, workl, ierr)
c
if (ierr .ne. 0) then
info = -8
go to 1200
end if
c
c %----------------------------------------------------%
c | Make a copy of eigenvalues and corresponding error |
c | bounds obtained from dneigh . |
c %----------------------------------------------------%
c
call dcopy (kplusp, ritzr, 1, workl(kplusp**2+1), 1)
call dcopy (kplusp, ritzi, 1, workl(kplusp**2+kplusp+1), 1)
call dcopy (kplusp, bounds, 1, workl(kplusp**2+2*kplusp+1), 1)
c
c %---------------------------------------------------%
c | Select the wanted Ritz values and their bounds |
c | to be used in the convergence test. |
c | The wanted part of the spectrum and corresponding |
c | error bounds are in the last NEV loc. of RITZR, |
c | RITZI and BOUNDS respectively. The variables NEV |
c | and NP may be updated if the NEV-th wanted Ritz |
c | value has a non zero imaginary part. In this case |
c | NEV is increased by one and NP decreased by one. |
c | NOTE: The last two arguments of dngets are no |
c | longer used as of version 2.1. |
c %---------------------------------------------------%
c
nev = nev0
np = np0
numcnv = nev
call dngets (ishift, which, nev, np, ritzr, ritzi,
& bounds, workl, workl(np+1))
if (nev .eq. nev0+1) numcnv = nev0+1
c
c %-------------------%
c | Convergence test. |
c %-------------------%
c
call dcopy (nev, bounds(np+1), 1, workl(2*np+1), 1)
call dnconv (nev, ritzr(np+1), ritzi(np+1), workl(2*np+1),
& tol, nconv)
c
if (msglvl .gt. 2) then
kp(1) = nev
kp(2) = np
kp(3) = numcnv
kp(4) = nconv
call ivout (logfil, 4, kp, ndigit,
& '_naup2: NEV, NP, NUMCNV, NCONV are')
call dvout (logfil, kplusp, ritzr, ndigit,
& '_naup2: Real part of the eigenvalues of H')
call dvout (logfil, kplusp, ritzi, ndigit,
& '_naup2: Imaginary part of the eigenvalues of H')
call dvout (logfil, kplusp, bounds, ndigit,
& '_naup2: Ritz estimates of the current NCV Ritz values')
end if
c
c %---------------------------------------------------------%
c | Count the number of unwanted Ritz values that have zero |
c | Ritz estimates. If any Ritz estimates are equal to zero |
c | then a leading block of H of order equal to at least |
c | the number of Ritz values with zero Ritz estimates has |
c | split off. None of these Ritz values may be removed by |
c | shifting. Decrease NP the number of shifts to apply. If |
c | no shifts may be applied, then prepare to exit |
c %---------------------------------------------------------%
c
nptemp = np
do 30 j=1, nptemp
if (bounds(j) .eq. zero) then
np = np - 1
nev = nev + 1
end if
30 continue
c
if ( (nconv .ge. numcnv) .or.
& (iter .gt. mxiter) .or.
& (np .eq. 0) ) then
c
if (msglvl .gt. 4) then
call dvout (logfil, kplusp, workl(kplusp**2+1), ndigit,
& '_naup2: Real part of the eig computed by _neigh:')
call dvout (logfil, kplusp, workl(kplusp**2+kplusp+1),
& ndigit,
& '_naup2: Imag part of the eig computed by _neigh:')
call dvout (logfil, kplusp, workl(kplusp**2+kplusp*2+1),
& ndigit,
& '_naup2: Ritz eistmates computed by _neigh:')
end if
c
c %------------------------------------------------%
c | Prepare to exit. Put the converged Ritz values |
c | and corresponding bounds in RITZ(1:NCONV) and |
c | BOUNDS(1:NCONV) respectively. Then sort. Be |
c | careful when NCONV > NP |
c %------------------------------------------------%
c
c %------------------------------------------%
c | Use h( 3,1 ) as storage to communicate |
c | rnorm to _neupd if needed |
c %------------------------------------------%
h(3,1) = rnorm
c
c %----------------------------------------------%
c | To be consistent with dngets , we first do a |
c | pre-processing sort in order to keep complex |
c | conjugate pairs together. This is similar |
c | to the pre-processing sort used in dngets |
c | except that the sort is done in the opposite |
c | order. |
c %----------------------------------------------%
c
if (which .eq. 'LM') wprime = 'SR'
if (which .eq. 'SM') wprime = 'LR'
if (which .eq. 'LR') wprime = 'SM'
if (which .eq. 'SR') wprime = 'LM'
if (which .eq. 'LI') wprime = 'SM'
if (which .eq. 'SI') wprime = 'LM'
c
call dsortc (wprime, .true., kplusp, ritzr, ritzi, bounds)
c
c %----------------------------------------------%
c | Now sort Ritz values so that converged Ritz |
c | values appear within the first NEV locations |
c | of ritzr, ritzi and bounds, and the most |
c | desired one appears at the front. |
c %----------------------------------------------%
c
if (which .eq. 'LM') wprime = 'SM'
if (which .eq. 'SM') wprime = 'LM'
if (which .eq. 'LR') wprime = 'SR'
if (which .eq. 'SR') wprime = 'LR'
if (which .eq. 'LI') wprime = 'SI'
if (which .eq. 'SI') wprime = 'LI'
c
call dsortc (wprime, .true., kplusp, ritzr, ritzi, bounds)
c
c %--------------------------------------------------%
c | Scale the Ritz estimate of each Ritz value |
c | by 1 / max(eps23,magnitude of the Ritz value). |
c %--------------------------------------------------%
c
do 35 j = 1, numcnv
temp = max(eps23,dlapy2 (ritzr(j),
& ritzi(j)))
bounds(j) = bounds(j)/temp
35 continue
c
c %----------------------------------------------------%
c | Sort the Ritz values according to the scaled Ritz |
c | esitmates. This will push all the converged ones |
c | towards the front of ritzr, ritzi, bounds |
c | (in the case when NCONV < NEV.) |
c %----------------------------------------------------%
c
wprime = 'LR'
call dsortc (wprime, .true., numcnv, bounds, ritzr, ritzi)
c
c %----------------------------------------------%
c | Scale the Ritz estimate back to its original |
c | value. |
c %----------------------------------------------%
c
do 40 j = 1, numcnv
temp = max(eps23, dlapy2 (ritzr(j),
& ritzi(j)))
bounds(j) = bounds(j)*temp
40 continue
c
c %------------------------------------------------%
c | Sort the converged Ritz values again so that |
c | the "threshold" value appears at the front of |
c | ritzr, ritzi and bound. |
c %------------------------------------------------%
c
call dsortc (which, .true., nconv, ritzr, ritzi, bounds)
c
if (msglvl .gt. 1) then
call dvout (logfil, kplusp, ritzr, ndigit,
& '_naup2: Sorted real part of the eigenvalues')
call dvout (logfil, kplusp, ritzi, ndigit,
& '_naup2: Sorted imaginary part of the eigenvalues')
call dvout (logfil, kplusp, bounds, ndigit,
& '_naup2: Sorted ritz estimates.')
end if
c
c %------------------------------------%
c | Max iterations have been exceeded. |
c %------------------------------------%
c
if (iter .gt. mxiter .and. nconv .lt. numcnv) info = 1
c
c %---------------------%
c | No shifts to apply. |
c %---------------------%
c
if (np .eq. 0 .and. nconv .lt. numcnv) info = 2
c
np = nconv
go to 1100
c
else if ( (nconv .lt. numcnv) .and. (ishift .eq. 1) ) then
c
c %-------------------------------------------------%
c | Do not have all the requested eigenvalues yet. |
c | To prevent possible stagnation, adjust the size |
c | of NEV. |
c %-------------------------------------------------%
c
nevbef = nev
nev = nev + min(nconv, np/2)
if (nev .eq. 1 .and. kplusp .ge. 6) then
nev = kplusp / 2
else if (nev .eq. 1 .and. kplusp .gt. 3) then
nev = 2
end if
c %---- Scipy fix ------------------------------------------------
c | We must keep nev below this value, as otherwise we can get
c | np == 0 (note that dngets below can bump nev by 1). If np == 0,
c | the next call to `dnaitr` will write out-of-bounds.
c |
if (nev .gt. kplusp - 2) then
nev = kplusp - 2
end if
c |
c %---- Scipy fix end --------------------------------------------
c
np = kplusp - nev
c
c %---------------------------------------%
c | If the size of NEV was just increased |
c | resort the eigenvalues. |
c %---------------------------------------%
c
if (nevbef .lt. nev)
& call dngets (ishift, which, nev, np, ritzr, ritzi,
& bounds, workl, workl(np+1))
c
end if
c
if (msglvl .gt. 0) then
call ivout (logfil, 1, nconv, ndigit,
& '_naup2: no. of "converged" Ritz values at this iter.')
if (msglvl .gt. 1) then
kp(1) = nev
kp(2) = np
call ivout (logfil, 2, kp, ndigit,
& '_naup2: NEV and NP are')
call dvout (logfil, nev, ritzr(np+1), ndigit,
& '_naup2: "wanted" Ritz values -- real part')
call dvout (logfil, nev, ritzi(np+1), ndigit,
& '_naup2: "wanted" Ritz values -- imag part')
call dvout (logfil, nev, bounds(np+1), ndigit,
& '_naup2: Ritz estimates of the "wanted" values ')
end if
end if
c
if (ishift .eq. 0) then
c
c %-------------------------------------------------------%
c | User specified shifts: reverse comminucation to |
c | compute the shifts. They are returned in the first |
c | 2*NP locations of WORKL. |
c %-------------------------------------------------------%
c
ushift = .true.
ido = 3
go to 9000
end if
c
50 continue
c
c %------------------------------------%
c | Back from reverse communication; |
c | User specified shifts are returned |
c | in WORKL(1:2*NP) |
c %------------------------------------%
c
ushift = .false.
c
if ( ishift .eq. 0 ) then
c
c %----------------------------------%
c | Move the NP shifts from WORKL to |
c | RITZR, RITZI to free up WORKL |
c | for non-exact shift case. |
c %----------------------------------%
c
call dcopy (np, workl, 1, ritzr, 1)
call dcopy (np, workl(np+1), 1, ritzi, 1)
end if
c
if (msglvl .gt. 2) then
call ivout (logfil, 1, np, ndigit,
& '_naup2: The number of shifts to apply ')
call dvout (logfil, np, ritzr, ndigit,
& '_naup2: Real part of the shifts')
call dvout (logfil, np, ritzi, ndigit,
& '_naup2: Imaginary part of the shifts')
if ( ishift .eq. 1 )
& call dvout (logfil, np, bounds, ndigit,
& '_naup2: Ritz estimates of the shifts')
end if
c
c %---------------------------------------------------------%
c | Apply the NP implicit shifts by QR bulge chasing. |
c | Each shift is applied to the whole upper Hessenberg |
c | matrix H. |
c | The first 2*N locations of WORKD are used as workspace. |
c %---------------------------------------------------------%
c
call dnapps (n, nev, np, ritzr, ritzi, v, ldv,
& h, ldh, resid, q, ldq, workl, workd)
c
c %---------------------------------------------%
c | Compute the B-norm of the updated residual. |
c | Keep B*RESID in WORKD(1:N) to be used in |
c | the first step of the next call to dnaitr . |
c %---------------------------------------------%
c
cnorm = .true.
call arscnd (t2)
if (bmat .eq. 'G') then
nbx = nbx + 1
call dcopy (n, resid, 1, workd(n+1), 1)
ipntr(1) = n + 1
ipntr(2) = 1
ido = 2
c
c %----------------------------------%
c | Exit in order to compute B*RESID |
c %----------------------------------%
c
go to 9000
else if (bmat .eq. 'I') then
call dcopy (n, resid, 1, workd, 1)
end if
c
100 continue
c
c %----------------------------------%
c | Back from reverse communication; |
c | WORKD(1:N) := B*RESID |
c %----------------------------------%
c
if (bmat .eq. 'G') then
call arscnd (t3)
tmvbx = tmvbx + (t3 - t2)
end if
c
if (bmat .eq. 'G') then
rnorm = ddot (n, resid, 1, workd, 1)
rnorm = sqrt(abs(rnorm))
else if (bmat .eq. 'I') then
rnorm = dnrm2 (n, resid, 1)
end if
cnorm = .false.
c
if (msglvl .gt. 2) then
call dvout (logfil, 1, rnorm, ndigit,
& '_naup2: B-norm of residual for compressed factorization')
call dmout (logfil, nev, nev, h, ldh, ndigit,
& '_naup2: Compressed upper Hessenberg matrix H')
end if
c
go to 1000
c
c %---------------------------------------------------------------%
c | |
c | E N D O F M A I N I T E R A T I O N L O O P |
c | |
c %---------------------------------------------------------------%
c
1100 continue
c
mxiter = iter
nev = numcnv
c
1200 continue
ido = 99
c
c %------------%
c | Error Exit |
c %------------%
c
call arscnd (t1)
tnaup2 = t1 - t0
c
9000 continue
c
c %---------------%
c | End of dnaup2 |
c %---------------%
c
return
end
|