1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: dneigh
c
c\Description:
c Compute the eigenvalues of the current upper Hessenberg matrix
c and the corresponding Ritz estimates given the current residual norm.
c
c\Usage:
c call dneigh
c ( RNORM, N, H, LDH, RITZR, RITZI, BOUNDS, Q, LDQ, WORKL, IERR )
c
c\Arguments
c RNORM Double precision scalar. (INPUT)
c Residual norm corresponding to the current upper Hessenberg
c matrix H.
c
c N Integer. (INPUT)
c Size of the matrix H.
c
c H Double precision N by N array. (INPUT)
c H contains the current upper Hessenberg matrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RITZR, Double precision arrays of length N. (OUTPUT)
c RITZI On output, RITZR(1:N) (resp. RITZI(1:N)) contains the real
c (respectively imaginary) parts of the eigenvalues of H.
c
c BOUNDS Double precision array of length N. (OUTPUT)
c On output, BOUNDS contains the Ritz estimates associated with
c the eigenvalues RITZR and RITZI. This is equal to RNORM
c times the last components of the eigenvectors corresponding
c to the eigenvalues in RITZR and RITZI.
c
c Q Double precision N by N array. (WORKSPACE)
c Workspace needed to store the eigenvectors of H.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Double precision work array of length N**2 + 3*N. (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end. This is needed to keep the full Schur form
c of H and also in the calculation of the eigenvectors of H.
c
c IERR Integer. (OUTPUT)
c Error exit flag from dlahqr or dtrevc.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\Routines called:
c dlahqr ARPACK routine to compute the real Schur form of an
c upper Hessenberg matrix and last row of the Schur vectors.
c arscnd ARPACK utility routine for timing.
c dmout ARPACK utility routine that prints matrices
c dvout ARPACK utility routine that prints vectors.
c dlacpy LAPACK matrix copy routine.
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c dtrevc LAPACK routine to compute the eigenvectors of a matrix
c in upper quasi-triangular form
c dgemv Level 2 BLAS routine for matrix vector multiplication.
c dcopy Level 1 BLAS that copies one vector to another .
c dnrm2 Level 1 BLAS that computes the norm of a vector.
c dscal Level 1 BLAS that scales a vector.
c
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c xx/xx/92: Version ' 2.1'
c
c\SCCS Information: @(#)
c FILE: neigh.F SID: 2.3 DATE OF SID: 4/20/96 RELEASE: 2
c
c\Remarks
c None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine dneigh (rnorm, n, h, ldh, ritzr, ritzi, bounds,
& q, ldq, workl, ierr)
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer ierr, n, ldh, ldq
Double precision
& rnorm
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Double precision
& bounds(n), h(ldh,n), q(ldq,n), ritzi(n), ritzr(n),
& workl(n*(n+3))
c
c %------------%
c | Parameters |
c %------------%
c
Double precision
& one, zero
parameter (one = 1.0D+0, zero = 0.0D+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
logical select(1)
integer i, iconj, msglvl
Double precision
& temp, vl(1)
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external dcopy, dlacpy, dlahqr, dtrevc, dvout, arscnd
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& dlapy2, dnrm2
external dlapy2, dnrm2
c
c %---------------------%
c | Intrinsic Functions |
c %---------------------%
c
intrinsic abs
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mneigh
c
if (msglvl .gt. 2) then
call dmout (logfil, n, n, h, ldh, ndigit,
& '_neigh: Entering upper Hessenberg matrix H ')
end if
c
c %-----------------------------------------------------------%
c | 1. Compute the eigenvalues, the last components of the |
c | corresponding Schur vectors and the full Schur form T |
c | of the current upper Hessenberg matrix H. |
c | dlahqr returns the full Schur form of H in WORKL(1:N**2) |
c | and the last components of the Schur vectors in BOUNDS. |
c %-----------------------------------------------------------%
c
call dlacpy ('All', n, n, h, ldh, workl, n)
do 5 j = 1, n-1
bounds(j) = zero
5 continue
bounds(n) = 1
call dlahqr(.true., .true., n, 1, n, workl, n, ritzr, ritzi, 1, 1,
& bounds, 1, ierr)
if (ierr .ne. 0) go to 9000
c
if (msglvl .gt. 1) then
call dvout (logfil, n, bounds, ndigit,
& '_neigh: last row of the Schur matrix for H')
end if
c
c %-----------------------------------------------------------%
c | 2. Compute the eigenvectors of the full Schur form T and |
c | apply the last components of the Schur vectors to get |
c | the last components of the corresponding eigenvectors. |
c | Remember that if the i-th and (i+1)-st eigenvalues are |
c | complex conjugate pairs, then the real & imaginary part |
c | of the eigenvector components are split across adjacent |
c | columns of Q. |
c %-----------------------------------------------------------%
c
call dtrevc ('R', 'A', select, n, workl, n, vl, n, q, ldq,
& n, n, workl(n*n+1), ierr)
c
if (ierr .ne. 0) go to 9000
c
c %------------------------------------------------%
c | Scale the returning eigenvectors so that their |
c | euclidean norms are all one. LAPACK subroutine |
c | dtrevc returns each eigenvector normalized so |
c | that the element of largest magnitude has |
c | magnitude 1; here the magnitude of a complex |
c | number (x,y) is taken to be |x| + |y|. |
c %------------------------------------------------%
c
iconj = 0
do 10 i=1, n
if ( abs( ritzi(i) ) .le. zero ) then
c
c %----------------------%
c | Real eigenvalue case |
c %----------------------%
c
temp = dnrm2( n, q(1,i), 1 )
call dscal ( n, one / temp, q(1,i), 1 )
else
c
c %-------------------------------------------%
c | Complex conjugate pair case. Note that |
c | since the real and imaginary part of |
c | the eigenvector are stored in consecutive |
c | columns, we further normalize by the |
c | square root of two. |
c %-------------------------------------------%
c
if (iconj .eq. 0) then
temp = dlapy2( dnrm2( n, q(1,i), 1 ),
& dnrm2( n, q(1,i+1), 1 ) )
call dscal ( n, one / temp, q(1,i), 1 )
call dscal ( n, one / temp, q(1,i+1), 1 )
iconj = 1
else
iconj = 0
end if
end if
10 continue
c
call dgemv ('T', n, n, one, q, ldq, bounds, 1, zero, workl, 1)
c
if (msglvl .gt. 1) then
call dvout (logfil, n, workl, ndigit,
& '_neigh: Last row of the eigenvector matrix for H')
end if
c
c %----------------------------%
c | Compute the Ritz estimates |
c %----------------------------%
c
iconj = 0
do 20 i = 1, n
if ( abs( ritzi(i) ) .le. zero ) then
c
c %----------------------%
c | Real eigenvalue case |
c %----------------------%
c
bounds(i) = rnorm * abs( workl(i) )
else
c
c %-------------------------------------------%
c | Complex conjugate pair case. Note that |
c | since the real and imaginary part of |
c | the eigenvector are stored in consecutive |
c | columns, we need to take the magnitude |
c | of the last components of the two vectors |
c %-------------------------------------------%
c
if (iconj .eq. 0) then
bounds(i) = rnorm * dlapy2( workl(i), workl(i+1) )
bounds(i+1) = bounds(i)
iconj = 1
else
iconj = 0
end if
end if
20 continue
c
if (msglvl .gt. 2) then
call dvout (logfil, n, ritzr, ndigit,
& '_neigh: Real part of the eigenvalues of H')
call dvout (logfil, n, ritzi, ndigit,
& '_neigh: Imaginary part of the eigenvalues of H')
call dvout (logfil, n, bounds, ndigit,
& '_neigh: Ritz estimates for the eigenvalues of H')
end if
c
call arscnd (t1)
tneigh = tneigh + (t1 - t0)
c
9000 continue
return
c
c %---------------%
c | End of dneigh |
c %---------------%
c
end
|