File: dneigh.f

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (318 lines) | stat: -rw-r--r-- 10,500 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: dneigh
c
c\Description:
c  Compute the eigenvalues of the current upper Hessenberg matrix
c  and the corresponding Ritz estimates given the current residual norm.
c
c\Usage:
c  call dneigh
c     ( RNORM, N, H, LDH, RITZR, RITZI, BOUNDS, Q, LDQ, WORKL, IERR )
c
c\Arguments
c  RNORM   Double precision scalar.  (INPUT)
c          Residual norm corresponding to the current upper Hessenberg 
c          matrix H.
c
c  N       Integer.  (INPUT)
c          Size of the matrix H.
c
c  H       Double precision N by N array.  (INPUT)
c          H contains the current upper Hessenberg matrix.
c
c  LDH     Integer.  (INPUT)
c          Leading dimension of H exactly as declared in the calling
c          program.
c
c  RITZR,  Double precision arrays of length N.  (OUTPUT)
c  RITZI   On output, RITZR(1:N) (resp. RITZI(1:N)) contains the real 
c          (respectively imaginary) parts of the eigenvalues of H.
c
c  BOUNDS  Double precision array of length N.  (OUTPUT)
c          On output, BOUNDS contains the Ritz estimates associated with
c          the eigenvalues RITZR and RITZI.  This is equal to RNORM 
c          times the last components of the eigenvectors corresponding 
c          to the eigenvalues in RITZR and RITZI.
c
c  Q       Double precision N by N array.  (WORKSPACE)
c          Workspace needed to store the eigenvectors of H.
c
c  LDQ     Integer.  (INPUT)
c          Leading dimension of Q exactly as declared in the calling
c          program.
c
c  WORKL   Double precision work array of length N**2 + 3*N.  (WORKSPACE)
c          Private (replicated) array on each PE or array allocated on
c          the front end.  This is needed to keep the full Schur form
c          of H and also in the calculation of the eigenvectors of H.
c
c  IERR    Integer.  (OUTPUT)
c          Error exit flag from dlahqr or dtrevc.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c     xxxxxx  real
c
c\Routines called:
c     dlahqr  ARPACK routine to compute the real Schur form of an
c             upper Hessenberg matrix and last row of the Schur vectors.
c     arscnd  ARPACK utility routine for timing.
c     dmout   ARPACK utility routine that prints matrices
c     dvout   ARPACK utility routine that prints vectors.
c     dlacpy  LAPACK matrix copy routine.
c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     dtrevc  LAPACK routine to compute the eigenvectors of a matrix
c             in upper quasi-triangular form
c     dgemv   Level 2 BLAS routine for matrix vector multiplication.
c     dcopy   Level 1 BLAS that copies one vector to another .
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     dscal   Level 1 BLAS that scales a vector.
c     
c
c\Author
c     Danny Sorensen               Phuong Vu
c     Richard Lehoucq              CRPC / Rice University
c     Dept. of Computational &     Houston, Texas
c     Applied Mathematics
c     Rice University           
c     Houston, Texas    
c
c\Revision history:
c     xx/xx/92: Version ' 2.1'
c
c\SCCS Information: @(#) 
c FILE: neigh.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
c
c\Remarks
c     None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
      subroutine dneigh (rnorm, n, h, ldh, ritzr, ritzi, bounds, 
     &                   q, ldq, workl, ierr)
c
c     %----------------------------------------------------%
c     | Include files for debugging and timing information |
c     %----------------------------------------------------%
c
      include   'debug.h'
      include   'stat.h'
c
c     %------------------%
c     | Scalar Arguments |
c     %------------------%
c
      integer    ierr, n, ldh, ldq
      Double precision     
     &           rnorm
c
c     %-----------------%
c     | Array Arguments |
c     %-----------------%
c
      Double precision     
     &           bounds(n), h(ldh,n), q(ldq,n), ritzi(n), ritzr(n),
     &           workl(n*(n+3))
c 
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision     
     &           one, zero
      parameter (one = 1.0D+0, zero = 0.0D+0)
c 
c     %------------------------%
c     | Local Scalars & Arrays |
c     %------------------------%
c
      logical    select(1)
      integer    i, iconj, msglvl
      Double precision     
     &           temp, vl(1)
c
c     %----------------------%
c     | External Subroutines |
c     %----------------------%
c
      external   dcopy, dlacpy, dlahqr, dtrevc, dvout, arscnd
c
c     %--------------------%
c     | External Functions |
c     %--------------------%
c
      Double precision
     &           dlapy2, dnrm2
      external   dlapy2, dnrm2
c
c     %---------------------%
c     | Intrinsic Functions |
c     %---------------------%
c
      intrinsic  abs
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c
c     %-------------------------------%
c     | Initialize timing statistics  |
c     | & message level for debugging |
c     %-------------------------------%
c
      call arscnd (t0)
      msglvl = mneigh
c 
      if (msglvl .gt. 2) then
          call dmout (logfil, n, n, h, ldh, ndigit, 
     &         '_neigh: Entering upper Hessenberg matrix H ')
      end if
c 
c     %-----------------------------------------------------------%
c     | 1. Compute the eigenvalues, the last components of the    |
c     |    corresponding Schur vectors and the full Schur form T  |
c     |    of the current upper Hessenberg matrix H.              |
c     | dlahqr returns the full Schur form of H in WORKL(1:N**2)  |
c     | and the last components of the Schur vectors in BOUNDS.   |
c     %-----------------------------------------------------------%
c
      call dlacpy ('All', n, n, h, ldh, workl, n)
      do 5 j = 1, n-1
          bounds(j) = zero
   5  continue
      bounds(n) = 1
      call dlahqr(.true., .true., n, 1, n, workl, n, ritzr, ritzi, 1, 1,
     &            bounds, 1, ierr)
      if (ierr .ne. 0) go to 9000
c
      if (msglvl .gt. 1) then
         call dvout (logfil, n, bounds, ndigit,
     &              '_neigh: last row of the Schur matrix for H')
      end if
c
c     %-----------------------------------------------------------%
c     | 2. Compute the eigenvectors of the full Schur form T and  |
c     |    apply the last components of the Schur vectors to get  |
c     |    the last components of the corresponding eigenvectors. |
c     | Remember that if the i-th and (i+1)-st eigenvalues are    |
c     | complex conjugate pairs, then the real & imaginary part   |
c     | of the eigenvector components are split across adjacent   |
c     | columns of Q.                                             |
c     %-----------------------------------------------------------%
c
      call dtrevc ('R', 'A', select, n, workl, n, vl, n, q, ldq,
     &             n, n, workl(n*n+1), ierr)
c
      if (ierr .ne. 0) go to 9000
c
c     %------------------------------------------------%
c     | Scale the returning eigenvectors so that their |
c     | euclidean norms are all one. LAPACK subroutine |
c     | dtrevc returns each eigenvector normalized so  |
c     | that the element of largest magnitude has      |
c     | magnitude 1; here the magnitude of a complex   |
c     | number (x,y) is taken to be |x| + |y|.         |
c     %------------------------------------------------%
c
      iconj = 0
      do 10 i=1, n
         if ( abs( ritzi(i) ) .le. zero ) then
c
c           %----------------------%
c           | Real eigenvalue case |
c           %----------------------%
c    
            temp = dnrm2( n, q(1,i), 1 )
            call dscal ( n, one / temp, q(1,i), 1 )
         else
c
c           %-------------------------------------------%
c           | Complex conjugate pair case. Note that    |
c           | since the real and imaginary part of      |
c           | the eigenvector are stored in consecutive |
c           | columns, we further normalize by the      |
c           | square root of two.                       |
c           %-------------------------------------------%
c
            if (iconj .eq. 0) then
               temp = dlapy2( dnrm2( n, q(1,i), 1 ), 
     &                        dnrm2( n, q(1,i+1), 1 ) )
               call dscal ( n, one / temp, q(1,i), 1 )
               call dscal ( n, one / temp, q(1,i+1), 1 )
               iconj = 1
            else
               iconj = 0
            end if
         end if         
   10 continue
c
      call dgemv ('T', n, n, one, q, ldq, bounds, 1, zero, workl, 1)
c
      if (msglvl .gt. 1) then
         call dvout (logfil, n, workl, ndigit,
     &              '_neigh: Last row of the eigenvector matrix for H')
      end if
c
c     %----------------------------%
c     | Compute the Ritz estimates |
c     %----------------------------%
c
      iconj = 0
      do 20 i = 1, n
         if ( abs( ritzi(i) ) .le. zero ) then
c
c           %----------------------%
c           | Real eigenvalue case |
c           %----------------------%
c    
            bounds(i) = rnorm * abs( workl(i) )
         else
c
c           %-------------------------------------------%
c           | Complex conjugate pair case. Note that    |
c           | since the real and imaginary part of      |
c           | the eigenvector are stored in consecutive |
c           | columns, we need to take the magnitude    |
c           | of the last components of the two vectors |
c           %-------------------------------------------%
c
            if (iconj .eq. 0) then
               bounds(i) = rnorm * dlapy2( workl(i), workl(i+1) )
               bounds(i+1) = bounds(i)
               iconj = 1
            else
               iconj = 0
            end if
         end if
   20 continue
c
      if (msglvl .gt. 2) then
         call dvout (logfil, n, ritzr, ndigit,
     &              '_neigh: Real part of the eigenvalues of H')
         call dvout (logfil, n, ritzi, ndigit,
     &              '_neigh: Imaginary part of the eigenvalues of H')
         call dvout (logfil, n, bounds, ndigit,
     &              '_neigh: Ritz estimates for the eigenvalues of H')
      end if
c
      call arscnd (t1)
      tneigh = tneigh + (t1 - t0)
c
 9000 continue
      return
c
c     %---------------%
c     | End of dneigh |
c     %---------------%
c
      end