File: test_arpack.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (965 lines) | stat: -rw-r--r-- 31,498 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
from __future__ import division, print_function, absolute_import

__usage__ = """
To run tests locally:
  python tests/test_arpack.py [-l<int>] [-v<int>]

"""

import threading

import numpy as np

from numpy.testing import (assert_allclose, assert_array_almost_equal_nulp,
                           assert_equal, assert_array_equal)
from pytest import raises as assert_raises
import pytest

from numpy import dot, conj, random
from scipy.linalg import eig, eigh, hilbert, svd
from scipy.sparse import csc_matrix, csr_matrix, isspmatrix, diags
from scipy.sparse.linalg import LinearOperator, aslinearoperator
from scipy.sparse.linalg.eigen.arpack import eigs, eigsh, svds, \
     ArpackNoConvergence, arpack

from scipy._lib._gcutils import assert_deallocated, IS_PYPY
from scipy._lib._numpy_compat import suppress_warnings


# precision for tests
_ndigits = {'f': 3, 'd': 11, 'F': 3, 'D': 11}


def _get_test_tolerance(type_char, mattype=None):
    """
    Return tolerance values suitable for a given test:

    Parameters
    ----------
    type_char : {'f', 'd', 'F', 'D'}
        Data type in ARPACK eigenvalue problem
    mattype : {csr_matrix, aslinearoperator, asarray}, optional
        Linear operator type

    Returns
    -------
    tol
        Tolerance to pass to the ARPACK routine
    rtol
        Relative tolerance for outputs
    atol
        Absolute tolerance for outputs

    """

    rtol = {'f': 3000 * np.finfo(np.float32).eps,
            'F': 3000 * np.finfo(np.float32).eps,
            'd': 2000 * np.finfo(np.float64).eps,
            'D': 2000 * np.finfo(np.float64).eps}[type_char]
    atol = rtol
    tol = 0

    if mattype is aslinearoperator and type_char in ('f', 'F'):
        # iterative methods in single precision: worse errors
        # also: bump ARPACK tolerance so that the iterative method converges
        tol = 30 * np.finfo(np.float32).eps
        rtol *= 5

    if mattype is csr_matrix and type_char in ('f', 'F'):
        # sparse in single precision: worse errors
        rtol *= 5

    return tol, rtol, atol


def generate_matrix(N, complex=False, hermitian=False,
                    pos_definite=False, sparse=False):
    M = np.random.random((N,N))
    if complex:
        M = M + 1j * np.random.random((N,N))

    if hermitian:
        if pos_definite:
            if sparse:
                i = np.arange(N)
                j = np.random.randint(N, size=N-2)
                i, j = np.meshgrid(i, j)
                M[i,j] = 0
            M = np.dot(M.conj(), M.T)
        else:
            M = np.dot(M.conj(), M.T)
            if sparse:
                i = np.random.randint(N, size=N * N // 4)
                j = np.random.randint(N, size=N * N // 4)
                ind = np.where(i == j)
                j[ind] = (j[ind] + 1) % N
                M[i,j] = 0
                M[j,i] = 0
    else:
        if sparse:
            i = np.random.randint(N, size=N * N // 2)
            j = np.random.randint(N, size=N * N // 2)
            M[i,j] = 0
    return M


def generate_matrix_symmetric(N, pos_definite=False, sparse=False):
    M = np.random.random((N, N))

    M = 0.5 * (M + M.T)  # Make M symmetric

    if pos_definite:
        Id = N * np.eye(N)
        if sparse:
            M = csr_matrix(M)
        M += Id
    else:
        if sparse:
            M = csr_matrix(M)

    return M


def _aslinearoperator_with_dtype(m):
    m = aslinearoperator(m)
    if not hasattr(m, 'dtype'):
        x = np.zeros(m.shape[1])
        m.dtype = (m * x).dtype
    return m


def assert_allclose_cc(actual, desired, **kw):
    """Almost equal or complex conjugates almost equal"""
    try:
        assert_allclose(actual, desired, **kw)
    except:
        assert_allclose(actual, conj(desired), **kw)


def argsort_which(eval, typ, k, which,
                  sigma=None, OPpart=None, mode=None):
    """Return sorted indices of eigenvalues using the "which" keyword
    from eigs and eigsh"""
    if sigma is None:
        reval = np.round(eval, decimals=_ndigits[typ])
    else:
        if mode is None or mode == 'normal':
            if OPpart is None:
                reval = 1. / (eval - sigma)
            elif OPpart == 'r':
                reval = 0.5 * (1. / (eval - sigma)
                               + 1. / (eval - np.conj(sigma)))
            elif OPpart == 'i':
                reval = -0.5j * (1. / (eval - sigma)
                                 - 1. / (eval - np.conj(sigma)))
        elif mode == 'cayley':
            reval = (eval + sigma) / (eval - sigma)
        elif mode == 'buckling':
            reval = eval / (eval - sigma)
        else:
            raise ValueError("mode='%s' not recognized" % mode)

        reval = np.round(reval, decimals=_ndigits[typ])

    if which in ['LM', 'SM']:
        ind = np.argsort(abs(reval))
    elif which in ['LR', 'SR', 'LA', 'SA', 'BE']:
        ind = np.argsort(np.real(reval))
    elif which in ['LI', 'SI']:
        # for LI,SI ARPACK returns largest,smallest abs(imaginary) why?
        if typ.islower():
            ind = np.argsort(abs(np.imag(reval)))
        else:
            ind = np.argsort(np.imag(reval))
    else:
        raise ValueError("which='%s' is unrecognized" % which)

    if which in ['LM', 'LA', 'LR', 'LI']:
        return ind[-k:]
    elif which in ['SM', 'SA', 'SR', 'SI']:
        return ind[:k]
    elif which == 'BE':
        return np.concatenate((ind[:k//2], ind[k//2-k:]))


def eval_evec(symmetric, d, typ, k, which, v0=None, sigma=None,
              mattype=np.asarray, OPpart=None, mode='normal'):
    general = ('bmat' in d)

    if symmetric:
        eigs_func = eigsh
    else:
        eigs_func = eigs

    if general:
        err = ("error for %s:general, typ=%s, which=%s, sigma=%s, "
               "mattype=%s, OPpart=%s, mode=%s" % (eigs_func.__name__,
                                                   typ, which, sigma,
                                                   mattype.__name__,
                                                   OPpart, mode))
    else:
        err = ("error for %s:standard, typ=%s, which=%s, sigma=%s, "
               "mattype=%s, OPpart=%s, mode=%s" % (eigs_func.__name__,
                                                   typ, which, sigma,
                                                   mattype.__name__,
                                                   OPpart, mode))

    a = d['mat'].astype(typ)
    ac = mattype(a)

    if general:
        b = d['bmat'].astype(typ.lower())
        bc = mattype(b)

    # get exact eigenvalues
    exact_eval = d['eval'].astype(typ.upper())
    ind = argsort_which(exact_eval, typ, k, which,
                        sigma, OPpart, mode)
    exact_eval = exact_eval[ind]

    # compute arpack eigenvalues
    kwargs = dict(which=which, v0=v0, sigma=sigma)
    if eigs_func is eigsh:
        kwargs['mode'] = mode
    else:
        kwargs['OPpart'] = OPpart

    # compute suitable tolerances
    kwargs['tol'], rtol, atol = _get_test_tolerance(typ, mattype)

    # on rare occasions, ARPACK routines return results that are proper
    # eigenvalues and -vectors, but not necessarily the ones requested in
    # the parameter which. This is inherent to the Krylov methods, and
    # should not be treated as a failure. If such a rare situation
    # occurs, the calculation is tried again (but at most a few times).
    ntries = 0
    while ntries < 5:
        # solve
        if general:
            try:
                eval, evec = eigs_func(ac, k, bc, **kwargs)
            except ArpackNoConvergence:
                kwargs['maxiter'] = 20*a.shape[0]
                eval, evec = eigs_func(ac, k, bc, **kwargs)
        else:
            try:
                eval, evec = eigs_func(ac, k, **kwargs)
            except ArpackNoConvergence:
                kwargs['maxiter'] = 20*a.shape[0]
                eval, evec = eigs_func(ac, k, **kwargs)

        ind = argsort_which(eval, typ, k, which,
                            sigma, OPpart, mode)
        eval = eval[ind]
        evec = evec[:,ind]

        # check eigenvectors
        LHS = np.dot(a, evec)
        if general:
            RHS = eval * np.dot(b, evec)
        else:
            RHS = eval * evec

            assert_allclose(LHS, RHS, rtol=rtol, atol=atol, err_msg=err)

        try:
            # check eigenvalues
            assert_allclose_cc(eval, exact_eval, rtol=rtol, atol=atol,
                               err_msg=err)
            break
        except AssertionError:
            ntries += 1

    # check eigenvalues
    assert_allclose_cc(eval, exact_eval, rtol=rtol, atol=atol, err_msg=err)


class DictWithRepr(dict):
    def __init__(self, name):
        self.name = name

    def __repr__(self):
        return "<%s>" % self.name


class SymmetricParams:
    def __init__(self):
        self.eigs = eigsh
        self.which = ['LM', 'SM', 'LA', 'SA', 'BE']
        self.mattypes = [csr_matrix, aslinearoperator, np.asarray]
        self.sigmas_modes = {None: ['normal'],
                             0.5: ['normal', 'buckling', 'cayley']}

        # generate matrices
        # these should all be float32 so that the eigenvalues
        # are the same in float32 and float64
        N = 6
        np.random.seed(2300)
        Ar = generate_matrix(N, hermitian=True,
                             pos_definite=True).astype('f').astype('d')
        M = generate_matrix(N, hermitian=True,
                            pos_definite=True).astype('f').astype('d')
        Ac = generate_matrix(N, hermitian=True, pos_definite=True,
                             complex=True).astype('F').astype('D')
        v0 = np.random.random(N)

        # standard symmetric problem
        SS = DictWithRepr("std-symmetric")
        SS['mat'] = Ar
        SS['v0'] = v0
        SS['eval'] = eigh(SS['mat'], eigvals_only=True)

        # general symmetric problem
        GS = DictWithRepr("gen-symmetric")
        GS['mat'] = Ar
        GS['bmat'] = M
        GS['v0'] = v0
        GS['eval'] = eigh(GS['mat'], GS['bmat'], eigvals_only=True)

        # standard hermitian problem
        SH = DictWithRepr("std-hermitian")
        SH['mat'] = Ac
        SH['v0'] = v0
        SH['eval'] = eigh(SH['mat'], eigvals_only=True)

        # general hermitian problem
        GH = DictWithRepr("gen-hermitian")
        GH['mat'] = Ac
        GH['bmat'] = M
        GH['v0'] = v0
        GH['eval'] = eigh(GH['mat'], GH['bmat'], eigvals_only=True)

        self.real_test_cases = [SS, GS]
        self.complex_test_cases = [SH, GH]


class NonSymmetricParams:
    def __init__(self):
        self.eigs = eigs
        self.which = ['LM', 'LR', 'LI']  # , 'SM', 'LR', 'SR', 'LI', 'SI']
        self.mattypes = [csr_matrix, aslinearoperator, np.asarray]
        self.sigmas_OPparts = {None: [None],
                               0.1: ['r'],
                               0.1 + 0.1j: ['r', 'i']}

        # generate matrices
        # these should all be float32 so that the eigenvalues
        # are the same in float32 and float64
        N = 6
        np.random.seed(2300)
        Ar = generate_matrix(N).astype('f').astype('d')
        M = generate_matrix(N, hermitian=True,
                            pos_definite=True).astype('f').astype('d')
        Ac = generate_matrix(N, complex=True).astype('F').astype('D')
        v0 = np.random.random(N)

        # standard real nonsymmetric problem
        SNR = DictWithRepr("std-real-nonsym")
        SNR['mat'] = Ar
        SNR['v0'] = v0
        SNR['eval'] = eig(SNR['mat'], left=False, right=False)

        # general real nonsymmetric problem
        GNR = DictWithRepr("gen-real-nonsym")
        GNR['mat'] = Ar
        GNR['bmat'] = M
        GNR['v0'] = v0
        GNR['eval'] = eig(GNR['mat'], GNR['bmat'], left=False, right=False)

        # standard complex nonsymmetric problem
        SNC = DictWithRepr("std-cmplx-nonsym")
        SNC['mat'] = Ac
        SNC['v0'] = v0
        SNC['eval'] = eig(SNC['mat'], left=False, right=False)

        # general complex nonsymmetric problem
        GNC = DictWithRepr("gen-cmplx-nonsym")
        GNC['mat'] = Ac
        GNC['bmat'] = M
        GNC['v0'] = v0
        GNC['eval'] = eig(GNC['mat'], GNC['bmat'], left=False, right=False)

        self.real_test_cases = [SNR, GNR]
        self.complex_test_cases = [SNC, GNC]


def test_symmetric_modes():
    params = SymmetricParams()
    k = 2
    symmetric = True
    for D in params.real_test_cases:
        for typ in 'fd':
            for which in params.which:
                for mattype in params.mattypes:
                    for (sigma, modes) in params.sigmas_modes.items():
                        for mode in modes:
                            eval_evec(symmetric, D, typ, k, which,
                                      None, sigma, mattype, None, mode)


def test_hermitian_modes():
    params = SymmetricParams()
    k = 2
    symmetric = True
    for D in params.complex_test_cases:
        for typ in 'FD':
            for which in params.which:
                if which == 'BE':
                    continue  # BE invalid for complex
                for mattype in params.mattypes:
                    for sigma in params.sigmas_modes:
                        eval_evec(symmetric, D, typ, k, which,
                                  None, sigma, mattype)


def test_symmetric_starting_vector():
    params = SymmetricParams()
    symmetric = True
    for k in [1, 2, 3, 4, 5]:
        for D in params.real_test_cases:
            for typ in 'fd':
                v0 = random.rand(len(D['v0'])).astype(typ)
                eval_evec(symmetric, D, typ, k, 'LM', v0)


def test_symmetric_no_convergence():
    np.random.seed(1234)
    m = generate_matrix(30, hermitian=True, pos_definite=True)
    tol, rtol, atol = _get_test_tolerance('d')
    try:
        w, v = eigsh(m, 4, which='LM', v0=m[:, 0], maxiter=5, tol=tol, ncv=9)
        raise AssertionError("Spurious no-error exit")
    except ArpackNoConvergence as err:
        k = len(err.eigenvalues)
        if k <= 0:
            raise AssertionError("Spurious no-eigenvalues-found case")
        w, v = err.eigenvalues, err.eigenvectors
        assert_allclose(dot(m, v), w * v, rtol=rtol, atol=atol)


def test_real_nonsymmetric_modes():
    params = NonSymmetricParams()
    k = 2
    symmetric = False
    for D in params.real_test_cases:
        for typ in 'fd':
            for which in params.which:
                for mattype in params.mattypes:
                    for sigma, OPparts in params.sigmas_OPparts.items():
                        for OPpart in OPparts:
                            eval_evec(symmetric, D, typ, k, which,
                                      None, sigma, mattype, OPpart)


def test_complex_nonsymmetric_modes():
    params = NonSymmetricParams()
    k = 2
    symmetric = False
    for D in params.complex_test_cases:
        for typ in 'DF':
            for which in params.which:
                for mattype in params.mattypes:
                    for sigma in params.sigmas_OPparts:
                        eval_evec(symmetric, D, typ, k, which,
                                  None, sigma, mattype)


def test_standard_nonsymmetric_starting_vector():
    params = NonSymmetricParams()
    sigma = None
    symmetric = False
    for k in [1, 2, 3, 4]:
        for d in params.complex_test_cases:
            for typ in 'FD':
                A = d['mat']
                n = A.shape[0]
                v0 = random.rand(n).astype(typ)
                eval_evec(symmetric, d, typ, k, "LM", v0, sigma)


def test_general_nonsymmetric_starting_vector():
    params = NonSymmetricParams()
    sigma = None
    symmetric = False
    for k in [1, 2, 3, 4]:
        for d in params.complex_test_cases:
            for typ in 'FD':
                A = d['mat']
                n = A.shape[0]
                v0 = random.rand(n).astype(typ)
                eval_evec(symmetric, d, typ, k, "LM", v0, sigma)


def test_standard_nonsymmetric_no_convergence():
    np.random.seed(1234)
    m = generate_matrix(30, complex=True)
    tol, rtol, atol = _get_test_tolerance('d')
    try:
        w, v = eigs(m, 4, which='LM', v0=m[:, 0], maxiter=5, tol=tol)
        raise AssertionError("Spurious no-error exit")
    except ArpackNoConvergence as err:
        k = len(err.eigenvalues)
        if k <= 0:
            raise AssertionError("Spurious no-eigenvalues-found case")
        w, v = err.eigenvalues, err.eigenvectors
        for ww, vv in zip(w, v.T):
            assert_allclose(dot(m, vv), ww * vv, rtol=rtol, atol=atol)


def test_eigen_bad_shapes():
    # A is not square.
    A = csc_matrix(np.zeros((2, 3)))
    assert_raises(ValueError, eigs, A)


def test_eigen_bad_kwargs():
    # Test eigen on wrong keyword argument
    A = csc_matrix(np.zeros((8, 8)))
    assert_raises(ValueError, eigs, A, which='XX')


def test_ticket_1459_arpack_crash():
    for dtype in [np.float32, np.float64]:
        # XXX: this test does not seem to catch the issue for float32,
        #      but we made the same fix there, just to be sure

        N = 6
        k = 2

        np.random.seed(2301)
        A = np.random.random((N, N)).astype(dtype)
        v0 = np.array([-0.71063568258907849895, -0.83185111795729227424,
                       -0.34365925382227402451, 0.46122533684552280420,
                       -0.58001341115969040629, -0.78844877570084292984e-01],
                      dtype=dtype)

        # Should not crash:
        evals, evecs = eigs(A, k, v0=v0)


#----------------------------------------------------------------------
# sparse SVD tests

def sorted_svd(m, k, which='LM'):
    # Compute svd of a dense matrix m, and return singular vectors/values
    # sorted.
    if isspmatrix(m):
        m = m.todense()
    u, s, vh = svd(m)
    if which == 'LM':
        ii = np.argsort(s)[-k:]
    elif which == 'SM':
        ii = np.argsort(s)[:k]
    else:
        raise ValueError("unknown which=%r" % (which,))

    return u[:, ii], s[ii], vh[ii]


def svd_estimate(u, s, vh):
    return np.dot(u, np.dot(np.diag(s), vh))


def svd_test_input_check():
    x = np.array([[1, 2, 3],
                  [3, 4, 3],
                  [1, 0, 2],
                  [0, 0, 1]], float)

    assert_raises(ValueError, svds, x, k=-1)
    assert_raises(ValueError, svds, x, k=0)
    assert_raises(ValueError, svds, x, k=10)
    assert_raises(ValueError, svds, x, k=x.shape[0])
    assert_raises(ValueError, svds, x, k=x.shape[1])
    assert_raises(ValueError, svds, x.T, k=x.shape[0])
    assert_raises(ValueError, svds, x.T, k=x.shape[1])


def test_svd_simple_real():
    x = np.array([[1, 2, 3],
                  [3, 4, 3],
                  [1, 0, 2],
                  [0, 0, 1]], float)
    y = np.array([[1, 2, 3, 8],
                  [3, 4, 3, 5],
                  [1, 0, 2, 3],
                  [0, 0, 1, 0]], float)
    z = csc_matrix(x)

    for m in [x.T, x, y, z, z.T]:
        for k in range(1, min(m.shape)):
            u, s, vh = sorted_svd(m, k)
            su, ss, svh = svds(m, k)

            m_hat = svd_estimate(u, s, vh)
            sm_hat = svd_estimate(su, ss, svh)

            assert_array_almost_equal_nulp(m_hat, sm_hat, nulp=1000)


def test_svd_simple_complex():
    x = np.array([[1, 2, 3],
                  [3, 4, 3],
                  [1 + 1j, 0, 2],
                  [0, 0, 1]], complex)
    y = np.array([[1, 2, 3, 8 + 5j],
                  [3 - 2j, 4, 3, 5],
                  [1, 0, 2, 3],
                  [0, 0, 1, 0]], complex)
    z = csc_matrix(x)

    for m in [x, x.T.conjugate(), x.T, y, y.conjugate(), z, z.T]:
        for k in range(1, min(m.shape) - 1):
            u, s, vh = sorted_svd(m, k)
            su, ss, svh = svds(m, k)

            m_hat = svd_estimate(u, s, vh)
            sm_hat = svd_estimate(su, ss, svh)

            assert_array_almost_equal_nulp(m_hat, sm_hat, nulp=1000)


def test_svd_maxiter():
    # check that maxiter works as expected
    x = hilbert(6)
    # ARPACK shouldn't converge on such an ill-conditioned matrix with just
    # one iteration
    assert_raises(ArpackNoConvergence, svds, x, 1, maxiter=1, ncv=3)
    # but 100 iterations should be more than enough
    u, s, vt = svds(x, 1, maxiter=100, ncv=3)
    assert_allclose(s, [1.7], atol=0.5)


def test_svd_return():
    # check that the return_singular_vectors parameter works as expected
    x = hilbert(6)
    _, s, _ = sorted_svd(x, 2)
    ss = svds(x, 2, return_singular_vectors=False)
    assert_allclose(s, ss)


def test_svd_which():
    # check that the which parameter works as expected
    x = hilbert(6)
    for which in ['LM', 'SM']:
        _, s, _ = sorted_svd(x, 2, which=which)
        ss = svds(x, 2, which=which, return_singular_vectors=False)
        ss.sort()
        assert_allclose(s, ss, atol=np.sqrt(1e-15))


def test_svd_v0():
    # check that the v0 parameter works as expected
    x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], float)

    u, s, vh = svds(x, 1)
    u2, s2, vh2 = svds(x, 1, v0=u[:,0])

    assert_allclose(s, s2, atol=np.sqrt(1e-15))


def _check_svds(A, k, U, s, VH):
    n, m = A.shape

    # Check shapes.
    assert_equal(U.shape, (n, k))
    assert_equal(s.shape, (k,))
    assert_equal(VH.shape, (k, m))

    # Check that the original matrix can be reconstituted.
    A_rebuilt = (U*s).dot(VH)
    assert_equal(A_rebuilt.shape, A.shape)
    assert_allclose(A_rebuilt, A)

    # Check that U is a semi-orthogonal matrix.
    UH_U = np.dot(U.T.conj(), U)
    assert_equal(UH_U.shape, (k, k))
    assert_allclose(UH_U, np.identity(k), atol=1e-12)

    # Check that V is a semi-orthogonal matrix.
    VH_V = np.dot(VH, VH.T.conj())
    assert_equal(VH_V.shape, (k, k))
    assert_allclose(VH_V, np.identity(k), atol=1e-12)


def test_svd_LM_ones_matrix():
    # Check that svds can deal with matrix_rank less than k in LM mode.
    k = 3
    for n, m in (6, 5), (5, 5), (5, 6):
        for t in float, complex:
            A = np.ones((n, m), dtype=t)
            U, s, VH = svds(A, k)

            # Check some generic properties of svd.
            _check_svds(A, k, U, s, VH)

            # Check that the largest singular value is near sqrt(n*m)
            # and the other singular values have been forced to zero.
            assert_allclose(np.max(s), np.sqrt(n*m))
            assert_array_equal(sorted(s)[:-1], 0)


def test_svd_LM_zeros_matrix():
    # Check that svds can deal with matrices containing only zeros.
    k = 1
    for n, m in (3, 4), (4, 4), (4, 3):
        for t in float, complex:
            A = np.zeros((n, m), dtype=t)
            U, s, VH = svds(A, k)

            # Check some generic properties of svd.
            _check_svds(A, k, U, s, VH)

            # Check that the singular values are zero.
            assert_array_equal(s, 0)


def test_svd_LM_zeros_matrix_gh_3452():
    # Regression test for a github issue.
    # https://github.com/scipy/scipy/issues/3452
    # Note that for complex dype the size of this matrix is too small for k=1.
    n, m, k = 4, 2, 1
    A = np.zeros((n, m))
    U, s, VH = svds(A, k)

    # Check some generic properties of svd.
    _check_svds(A, k, U, s, VH)

    # Check that the singular values are zero.
    assert_array_equal(s, 0)


class CheckingLinearOperator(LinearOperator):
    def __init__(self, A):
        self.A = A
        self.dtype = A.dtype
        self.shape = A.shape

    def _matvec(self, x):
        assert_equal(max(x.shape), np.size(x))
        return self.A.dot(x)

    def _rmatvec(self, x):
        assert_equal(max(x.shape), np.size(x))
        return self.A.T.conjugate().dot(x)


def test_svd_linop():
    nmks = [(6, 7, 3),
            (9, 5, 4),
            (10, 8, 5)]

    def reorder(args):
        U, s, VH = args
        j = np.argsort(s)
        return U[:,j], s[j], VH[j,:]

    for n, m, k in nmks:
        # Test svds on a LinearOperator.
        A = np.random.RandomState(52).randn(n, m)
        L = CheckingLinearOperator(A)

        v0 = np.ones(min(A.shape))

        U1, s1, VH1 = reorder(svds(A, k, v0=v0))
        U2, s2, VH2 = reorder(svds(L, k, v0=v0))

        assert_allclose(np.abs(U1), np.abs(U2))
        assert_allclose(s1, s2)
        assert_allclose(np.abs(VH1), np.abs(VH2))
        assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
                        np.dot(U2, np.dot(np.diag(s2), VH2)))

        # Try again with which="SM".
        A = np.random.RandomState(1909).randn(n, m)
        L = CheckingLinearOperator(A)

        U1, s1, VH1 = reorder(svds(A, k, which="SM"))
        U2, s2, VH2 = reorder(svds(L, k, which="SM"))

        assert_allclose(np.abs(U1), np.abs(U2))
        assert_allclose(s1, s2)
        assert_allclose(np.abs(VH1), np.abs(VH2))
        assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
                        np.dot(U2, np.dot(np.diag(s2), VH2)))

        if k < min(n, m) - 1:
            # Complex input and explicit which="LM".
            for (dt, eps) in [(complex, 1e-7), (np.complex64, 1e-3)]:
                rng = np.random.RandomState(1648)
                A = (rng.randn(n, m) + 1j * rng.randn(n, m)).astype(dt)
                L = CheckingLinearOperator(A)

                U1, s1, VH1 = reorder(svds(A, k, which="LM"))
                U2, s2, VH2 = reorder(svds(L, k, which="LM"))

                assert_allclose(np.abs(U1), np.abs(U2), rtol=eps)
                assert_allclose(s1, s2, rtol=eps)
                assert_allclose(np.abs(VH1), np.abs(VH2), rtol=eps)
                assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
                                np.dot(U2, np.dot(np.diag(s2), VH2)), rtol=eps)


@pytest.mark.skipif(IS_PYPY, reason="Test not meaningful on PyPy")
def test_linearoperator_deallocation():
    # Check that the linear operators used by the Arpack wrappers are
    # deallocatable by reference counting -- they are big objects, so
    # Python's cyclic GC may not collect them fast enough before
    # running out of memory if eigs/eigsh are called in a tight loop.

    M_d = np.eye(10)
    M_s = csc_matrix(M_d)
    M_o = aslinearoperator(M_d)

    with assert_deallocated(lambda: arpack.SpLuInv(M_s)):
        pass
    with assert_deallocated(lambda: arpack.LuInv(M_d)):
        pass
    with assert_deallocated(lambda: arpack.IterInv(M_s)):
        pass
    with assert_deallocated(lambda: arpack.IterOpInv(M_o, None, 0.3)):
        pass
    with assert_deallocated(lambda: arpack.IterOpInv(M_o, M_o, 0.3)):
        pass


def test_svds_partial_return():
    x = np.array([[1, 2, 3],
                  [3, 4, 3],
                  [1, 0, 2],
                  [0, 0, 1]], float)
    # test vertical matrix
    z = csr_matrix(x)
    vh_full = svds(z, 2)[-1]
    vh_partial = svds(z, 2, return_singular_vectors='vh')[-1]
    dvh = np.linalg.norm(np.abs(vh_full) - np.abs(vh_partial))
    if dvh > 1e-10:
        raise AssertionError('right eigenvector matrices differ when using return_singular_vectors parameter')
    if svds(z, 2, return_singular_vectors='vh')[0] is not None:
        raise AssertionError('left eigenvector matrix was computed when it should not have been')
    # test horizontal matrix
    z = csr_matrix(x.T)
    u_full = svds(z, 2)[0]
    u_partial = svds(z, 2, return_singular_vectors='vh')[0]
    du = np.linalg.norm(np.abs(u_full) - np.abs(u_partial))
    if du > 1e-10:
        raise AssertionError('left eigenvector matrices differ when using return_singular_vectors parameter')
    if svds(z, 2, return_singular_vectors='u')[-1] is not None:
        raise AssertionError('right eigenvector matrix was computed when it should not have been')

def test_svds_wrong_eigen_type():
    # Regression test for a github issue.
    # https://github.com/scipy/scipy/issues/4590
    # Function was not checking for eigenvalue type and unintended
    # values could be returned.
    x = np.array([[1, 2, 3],
                  [3, 4, 3],
                  [1, 0, 2],
                  [0, 0, 1]], float)
    assert_raises(ValueError, svds, x, 1, which='LA')


def test_parallel_threads():
    results = []
    v0 = np.random.rand(50)

    def worker():
        x = diags([1, -2, 1], [-1, 0, 1], shape=(50, 50))
        w, v = eigs(x, k=3, v0=v0)
        results.append(w)

        w, v = eigsh(x, k=3, v0=v0)
        results.append(w)

    threads = [threading.Thread(target=worker) for k in range(10)]
    for t in threads:
        t.start()
    for t in threads:
        t.join()

    worker()

    for r in results:
        assert_allclose(r, results[-1])


def test_reentering():
    # Just some linear operator that calls eigs recursively
    def A_matvec(x):
        x = diags([1, -2, 1], [-1, 0, 1], shape=(50, 50))
        w, v = eigs(x, k=1)
        return v / w[0]
    A = LinearOperator(matvec=A_matvec, dtype=float, shape=(50, 50))

    # The Fortran code is not reentrant, so this fails (gracefully, not crashing)
    assert_raises(RuntimeError, eigs, A, k=1)
    assert_raises(RuntimeError, eigsh, A, k=1)


def test_regression_arpackng_1315():
    # Check that issue arpack-ng/#1315 is not present.
    # Adapted from arpack-ng/TESTS/bug_1315_single.c
    # If this fails, then the installed ARPACK library is faulty.

    for dtype in [np.float32, np.float64]:
        np.random.seed(1234)

        w0 = np.arange(1, 1000+1).astype(dtype)
        A = diags([w0], [0], shape=(1000, 1000))

        v0 = np.random.rand(1000).astype(dtype)
        w, v = eigs(A, k=9, ncv=2*9+1, which="LM", v0=v0)

        assert_allclose(np.sort(w), np.sort(w0[-9:]),
                        rtol=1e-4)


def test_eigs_for_k_greater():
    # Test eigs() for k beyond limits.
    A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4))  # sparse
    A = generate_matrix(4, sparse=False)
    M_dense = np.random.random((4, 4))
    M_sparse = generate_matrix(4, sparse=True)
    M_linop = aslinearoperator(M_dense)
    eig_tuple1 = eig(A, b=M_dense)
    eig_tuple2 = eig(A, b=M_sparse)

    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning)

        assert_equal(eigs(A, M=M_dense, k=3), eig_tuple1)
        assert_equal(eigs(A, M=M_dense, k=4), eig_tuple1)
        assert_equal(eigs(A, M=M_dense, k=5), eig_tuple1)
        assert_equal(eigs(A, M=M_sparse, k=5), eig_tuple2)

        # M as LinearOperator
        assert_raises(TypeError, eigs, A, M=M_linop, k=3)

        # Test 'A' for different types
        assert_raises(TypeError, eigs, aslinearoperator(A), k=3)
        assert_raises(TypeError, eigs, A_sparse, k=3)


def test_eigsh_for_k_greater():
    # Test eigsh() for k beyond limits.
    A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4))  # sparse
    A = generate_matrix(4, sparse=False)
    M_dense = generate_matrix_symmetric(4, pos_definite=True)
    M_sparse = generate_matrix_symmetric(4, pos_definite=True, sparse=True)
    M_linop = aslinearoperator(M_dense)
    eig_tuple1 = eigh(A, b=M_dense)
    eig_tuple2 = eigh(A, b=M_sparse)

    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning)

        assert_equal(eigsh(A, M=M_dense, k=4), eig_tuple1)
        assert_equal(eigsh(A, M=M_dense, k=5), eig_tuple1)
        assert_equal(eigsh(A, M=M_sparse, k=5), eig_tuple2)

        # M as LinearOperator
        assert_raises(TypeError, eigsh, A, M=M_linop, k=4)

        # Test 'A' for different types
        assert_raises(TypeError, eigsh, aslinearoperator(A), k=4)
        assert_raises(TypeError, eigsh, A_sparse, M=M_dense, k=4)