1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
|
from __future__ import division, print_function, absolute_import
__usage__ = """
To run tests locally:
python tests/test_arpack.py [-l<int>] [-v<int>]
"""
import threading
import numpy as np
from numpy.testing import (assert_allclose, assert_array_almost_equal_nulp,
assert_equal, assert_array_equal)
from pytest import raises as assert_raises
import pytest
from numpy import dot, conj, random
from scipy.linalg import eig, eigh, hilbert, svd
from scipy.sparse import csc_matrix, csr_matrix, isspmatrix, diags
from scipy.sparse.linalg import LinearOperator, aslinearoperator
from scipy.sparse.linalg.eigen.arpack import eigs, eigsh, svds, \
ArpackNoConvergence, arpack
from scipy._lib._gcutils import assert_deallocated, IS_PYPY
from scipy._lib._numpy_compat import suppress_warnings
# precision for tests
_ndigits = {'f': 3, 'd': 11, 'F': 3, 'D': 11}
def _get_test_tolerance(type_char, mattype=None):
"""
Return tolerance values suitable for a given test:
Parameters
----------
type_char : {'f', 'd', 'F', 'D'}
Data type in ARPACK eigenvalue problem
mattype : {csr_matrix, aslinearoperator, asarray}, optional
Linear operator type
Returns
-------
tol
Tolerance to pass to the ARPACK routine
rtol
Relative tolerance for outputs
atol
Absolute tolerance for outputs
"""
rtol = {'f': 3000 * np.finfo(np.float32).eps,
'F': 3000 * np.finfo(np.float32).eps,
'd': 2000 * np.finfo(np.float64).eps,
'D': 2000 * np.finfo(np.float64).eps}[type_char]
atol = rtol
tol = 0
if mattype is aslinearoperator and type_char in ('f', 'F'):
# iterative methods in single precision: worse errors
# also: bump ARPACK tolerance so that the iterative method converges
tol = 30 * np.finfo(np.float32).eps
rtol *= 5
if mattype is csr_matrix and type_char in ('f', 'F'):
# sparse in single precision: worse errors
rtol *= 5
return tol, rtol, atol
def generate_matrix(N, complex=False, hermitian=False,
pos_definite=False, sparse=False):
M = np.random.random((N,N))
if complex:
M = M + 1j * np.random.random((N,N))
if hermitian:
if pos_definite:
if sparse:
i = np.arange(N)
j = np.random.randint(N, size=N-2)
i, j = np.meshgrid(i, j)
M[i,j] = 0
M = np.dot(M.conj(), M.T)
else:
M = np.dot(M.conj(), M.T)
if sparse:
i = np.random.randint(N, size=N * N // 4)
j = np.random.randint(N, size=N * N // 4)
ind = np.where(i == j)
j[ind] = (j[ind] + 1) % N
M[i,j] = 0
M[j,i] = 0
else:
if sparse:
i = np.random.randint(N, size=N * N // 2)
j = np.random.randint(N, size=N * N // 2)
M[i,j] = 0
return M
def generate_matrix_symmetric(N, pos_definite=False, sparse=False):
M = np.random.random((N, N))
M = 0.5 * (M + M.T) # Make M symmetric
if pos_definite:
Id = N * np.eye(N)
if sparse:
M = csr_matrix(M)
M += Id
else:
if sparse:
M = csr_matrix(M)
return M
def _aslinearoperator_with_dtype(m):
m = aslinearoperator(m)
if not hasattr(m, 'dtype'):
x = np.zeros(m.shape[1])
m.dtype = (m * x).dtype
return m
def assert_allclose_cc(actual, desired, **kw):
"""Almost equal or complex conjugates almost equal"""
try:
assert_allclose(actual, desired, **kw)
except:
assert_allclose(actual, conj(desired), **kw)
def argsort_which(eval, typ, k, which,
sigma=None, OPpart=None, mode=None):
"""Return sorted indices of eigenvalues using the "which" keyword
from eigs and eigsh"""
if sigma is None:
reval = np.round(eval, decimals=_ndigits[typ])
else:
if mode is None or mode == 'normal':
if OPpart is None:
reval = 1. / (eval - sigma)
elif OPpart == 'r':
reval = 0.5 * (1. / (eval - sigma)
+ 1. / (eval - np.conj(sigma)))
elif OPpart == 'i':
reval = -0.5j * (1. / (eval - sigma)
- 1. / (eval - np.conj(sigma)))
elif mode == 'cayley':
reval = (eval + sigma) / (eval - sigma)
elif mode == 'buckling':
reval = eval / (eval - sigma)
else:
raise ValueError("mode='%s' not recognized" % mode)
reval = np.round(reval, decimals=_ndigits[typ])
if which in ['LM', 'SM']:
ind = np.argsort(abs(reval))
elif which in ['LR', 'SR', 'LA', 'SA', 'BE']:
ind = np.argsort(np.real(reval))
elif which in ['LI', 'SI']:
# for LI,SI ARPACK returns largest,smallest abs(imaginary) why?
if typ.islower():
ind = np.argsort(abs(np.imag(reval)))
else:
ind = np.argsort(np.imag(reval))
else:
raise ValueError("which='%s' is unrecognized" % which)
if which in ['LM', 'LA', 'LR', 'LI']:
return ind[-k:]
elif which in ['SM', 'SA', 'SR', 'SI']:
return ind[:k]
elif which == 'BE':
return np.concatenate((ind[:k//2], ind[k//2-k:]))
def eval_evec(symmetric, d, typ, k, which, v0=None, sigma=None,
mattype=np.asarray, OPpart=None, mode='normal'):
general = ('bmat' in d)
if symmetric:
eigs_func = eigsh
else:
eigs_func = eigs
if general:
err = ("error for %s:general, typ=%s, which=%s, sigma=%s, "
"mattype=%s, OPpart=%s, mode=%s" % (eigs_func.__name__,
typ, which, sigma,
mattype.__name__,
OPpart, mode))
else:
err = ("error for %s:standard, typ=%s, which=%s, sigma=%s, "
"mattype=%s, OPpart=%s, mode=%s" % (eigs_func.__name__,
typ, which, sigma,
mattype.__name__,
OPpart, mode))
a = d['mat'].astype(typ)
ac = mattype(a)
if general:
b = d['bmat'].astype(typ.lower())
bc = mattype(b)
# get exact eigenvalues
exact_eval = d['eval'].astype(typ.upper())
ind = argsort_which(exact_eval, typ, k, which,
sigma, OPpart, mode)
exact_eval = exact_eval[ind]
# compute arpack eigenvalues
kwargs = dict(which=which, v0=v0, sigma=sigma)
if eigs_func is eigsh:
kwargs['mode'] = mode
else:
kwargs['OPpart'] = OPpart
# compute suitable tolerances
kwargs['tol'], rtol, atol = _get_test_tolerance(typ, mattype)
# on rare occasions, ARPACK routines return results that are proper
# eigenvalues and -vectors, but not necessarily the ones requested in
# the parameter which. This is inherent to the Krylov methods, and
# should not be treated as a failure. If such a rare situation
# occurs, the calculation is tried again (but at most a few times).
ntries = 0
while ntries < 5:
# solve
if general:
try:
eval, evec = eigs_func(ac, k, bc, **kwargs)
except ArpackNoConvergence:
kwargs['maxiter'] = 20*a.shape[0]
eval, evec = eigs_func(ac, k, bc, **kwargs)
else:
try:
eval, evec = eigs_func(ac, k, **kwargs)
except ArpackNoConvergence:
kwargs['maxiter'] = 20*a.shape[0]
eval, evec = eigs_func(ac, k, **kwargs)
ind = argsort_which(eval, typ, k, which,
sigma, OPpart, mode)
eval = eval[ind]
evec = evec[:,ind]
# check eigenvectors
LHS = np.dot(a, evec)
if general:
RHS = eval * np.dot(b, evec)
else:
RHS = eval * evec
assert_allclose(LHS, RHS, rtol=rtol, atol=atol, err_msg=err)
try:
# check eigenvalues
assert_allclose_cc(eval, exact_eval, rtol=rtol, atol=atol,
err_msg=err)
break
except AssertionError:
ntries += 1
# check eigenvalues
assert_allclose_cc(eval, exact_eval, rtol=rtol, atol=atol, err_msg=err)
class DictWithRepr(dict):
def __init__(self, name):
self.name = name
def __repr__(self):
return "<%s>" % self.name
class SymmetricParams:
def __init__(self):
self.eigs = eigsh
self.which = ['LM', 'SM', 'LA', 'SA', 'BE']
self.mattypes = [csr_matrix, aslinearoperator, np.asarray]
self.sigmas_modes = {None: ['normal'],
0.5: ['normal', 'buckling', 'cayley']}
# generate matrices
# these should all be float32 so that the eigenvalues
# are the same in float32 and float64
N = 6
np.random.seed(2300)
Ar = generate_matrix(N, hermitian=True,
pos_definite=True).astype('f').astype('d')
M = generate_matrix(N, hermitian=True,
pos_definite=True).astype('f').astype('d')
Ac = generate_matrix(N, hermitian=True, pos_definite=True,
complex=True).astype('F').astype('D')
v0 = np.random.random(N)
# standard symmetric problem
SS = DictWithRepr("std-symmetric")
SS['mat'] = Ar
SS['v0'] = v0
SS['eval'] = eigh(SS['mat'], eigvals_only=True)
# general symmetric problem
GS = DictWithRepr("gen-symmetric")
GS['mat'] = Ar
GS['bmat'] = M
GS['v0'] = v0
GS['eval'] = eigh(GS['mat'], GS['bmat'], eigvals_only=True)
# standard hermitian problem
SH = DictWithRepr("std-hermitian")
SH['mat'] = Ac
SH['v0'] = v0
SH['eval'] = eigh(SH['mat'], eigvals_only=True)
# general hermitian problem
GH = DictWithRepr("gen-hermitian")
GH['mat'] = Ac
GH['bmat'] = M
GH['v0'] = v0
GH['eval'] = eigh(GH['mat'], GH['bmat'], eigvals_only=True)
self.real_test_cases = [SS, GS]
self.complex_test_cases = [SH, GH]
class NonSymmetricParams:
def __init__(self):
self.eigs = eigs
self.which = ['LM', 'LR', 'LI'] # , 'SM', 'LR', 'SR', 'LI', 'SI']
self.mattypes = [csr_matrix, aslinearoperator, np.asarray]
self.sigmas_OPparts = {None: [None],
0.1: ['r'],
0.1 + 0.1j: ['r', 'i']}
# generate matrices
# these should all be float32 so that the eigenvalues
# are the same in float32 and float64
N = 6
np.random.seed(2300)
Ar = generate_matrix(N).astype('f').astype('d')
M = generate_matrix(N, hermitian=True,
pos_definite=True).astype('f').astype('d')
Ac = generate_matrix(N, complex=True).astype('F').astype('D')
v0 = np.random.random(N)
# standard real nonsymmetric problem
SNR = DictWithRepr("std-real-nonsym")
SNR['mat'] = Ar
SNR['v0'] = v0
SNR['eval'] = eig(SNR['mat'], left=False, right=False)
# general real nonsymmetric problem
GNR = DictWithRepr("gen-real-nonsym")
GNR['mat'] = Ar
GNR['bmat'] = M
GNR['v0'] = v0
GNR['eval'] = eig(GNR['mat'], GNR['bmat'], left=False, right=False)
# standard complex nonsymmetric problem
SNC = DictWithRepr("std-cmplx-nonsym")
SNC['mat'] = Ac
SNC['v0'] = v0
SNC['eval'] = eig(SNC['mat'], left=False, right=False)
# general complex nonsymmetric problem
GNC = DictWithRepr("gen-cmplx-nonsym")
GNC['mat'] = Ac
GNC['bmat'] = M
GNC['v0'] = v0
GNC['eval'] = eig(GNC['mat'], GNC['bmat'], left=False, right=False)
self.real_test_cases = [SNR, GNR]
self.complex_test_cases = [SNC, GNC]
def test_symmetric_modes():
params = SymmetricParams()
k = 2
symmetric = True
for D in params.real_test_cases:
for typ in 'fd':
for which in params.which:
for mattype in params.mattypes:
for (sigma, modes) in params.sigmas_modes.items():
for mode in modes:
eval_evec(symmetric, D, typ, k, which,
None, sigma, mattype, None, mode)
def test_hermitian_modes():
params = SymmetricParams()
k = 2
symmetric = True
for D in params.complex_test_cases:
for typ in 'FD':
for which in params.which:
if which == 'BE':
continue # BE invalid for complex
for mattype in params.mattypes:
for sigma in params.sigmas_modes:
eval_evec(symmetric, D, typ, k, which,
None, sigma, mattype)
def test_symmetric_starting_vector():
params = SymmetricParams()
symmetric = True
for k in [1, 2, 3, 4, 5]:
for D in params.real_test_cases:
for typ in 'fd':
v0 = random.rand(len(D['v0'])).astype(typ)
eval_evec(symmetric, D, typ, k, 'LM', v0)
def test_symmetric_no_convergence():
np.random.seed(1234)
m = generate_matrix(30, hermitian=True, pos_definite=True)
tol, rtol, atol = _get_test_tolerance('d')
try:
w, v = eigsh(m, 4, which='LM', v0=m[:, 0], maxiter=5, tol=tol, ncv=9)
raise AssertionError("Spurious no-error exit")
except ArpackNoConvergence as err:
k = len(err.eigenvalues)
if k <= 0:
raise AssertionError("Spurious no-eigenvalues-found case")
w, v = err.eigenvalues, err.eigenvectors
assert_allclose(dot(m, v), w * v, rtol=rtol, atol=atol)
def test_real_nonsymmetric_modes():
params = NonSymmetricParams()
k = 2
symmetric = False
for D in params.real_test_cases:
for typ in 'fd':
for which in params.which:
for mattype in params.mattypes:
for sigma, OPparts in params.sigmas_OPparts.items():
for OPpart in OPparts:
eval_evec(symmetric, D, typ, k, which,
None, sigma, mattype, OPpart)
def test_complex_nonsymmetric_modes():
params = NonSymmetricParams()
k = 2
symmetric = False
for D in params.complex_test_cases:
for typ in 'DF':
for which in params.which:
for mattype in params.mattypes:
for sigma in params.sigmas_OPparts:
eval_evec(symmetric, D, typ, k, which,
None, sigma, mattype)
def test_standard_nonsymmetric_starting_vector():
params = NonSymmetricParams()
sigma = None
symmetric = False
for k in [1, 2, 3, 4]:
for d in params.complex_test_cases:
for typ in 'FD':
A = d['mat']
n = A.shape[0]
v0 = random.rand(n).astype(typ)
eval_evec(symmetric, d, typ, k, "LM", v0, sigma)
def test_general_nonsymmetric_starting_vector():
params = NonSymmetricParams()
sigma = None
symmetric = False
for k in [1, 2, 3, 4]:
for d in params.complex_test_cases:
for typ in 'FD':
A = d['mat']
n = A.shape[0]
v0 = random.rand(n).astype(typ)
eval_evec(symmetric, d, typ, k, "LM", v0, sigma)
def test_standard_nonsymmetric_no_convergence():
np.random.seed(1234)
m = generate_matrix(30, complex=True)
tol, rtol, atol = _get_test_tolerance('d')
try:
w, v = eigs(m, 4, which='LM', v0=m[:, 0], maxiter=5, tol=tol)
raise AssertionError("Spurious no-error exit")
except ArpackNoConvergence as err:
k = len(err.eigenvalues)
if k <= 0:
raise AssertionError("Spurious no-eigenvalues-found case")
w, v = err.eigenvalues, err.eigenvectors
for ww, vv in zip(w, v.T):
assert_allclose(dot(m, vv), ww * vv, rtol=rtol, atol=atol)
def test_eigen_bad_shapes():
# A is not square.
A = csc_matrix(np.zeros((2, 3)))
assert_raises(ValueError, eigs, A)
def test_eigen_bad_kwargs():
# Test eigen on wrong keyword argument
A = csc_matrix(np.zeros((8, 8)))
assert_raises(ValueError, eigs, A, which='XX')
def test_ticket_1459_arpack_crash():
for dtype in [np.float32, np.float64]:
# XXX: this test does not seem to catch the issue for float32,
# but we made the same fix there, just to be sure
N = 6
k = 2
np.random.seed(2301)
A = np.random.random((N, N)).astype(dtype)
v0 = np.array([-0.71063568258907849895, -0.83185111795729227424,
-0.34365925382227402451, 0.46122533684552280420,
-0.58001341115969040629, -0.78844877570084292984e-01],
dtype=dtype)
# Should not crash:
evals, evecs = eigs(A, k, v0=v0)
#----------------------------------------------------------------------
# sparse SVD tests
def sorted_svd(m, k, which='LM'):
# Compute svd of a dense matrix m, and return singular vectors/values
# sorted.
if isspmatrix(m):
m = m.todense()
u, s, vh = svd(m)
if which == 'LM':
ii = np.argsort(s)[-k:]
elif which == 'SM':
ii = np.argsort(s)[:k]
else:
raise ValueError("unknown which=%r" % (which,))
return u[:, ii], s[ii], vh[ii]
def svd_estimate(u, s, vh):
return np.dot(u, np.dot(np.diag(s), vh))
def svd_test_input_check():
x = np.array([[1, 2, 3],
[3, 4, 3],
[1, 0, 2],
[0, 0, 1]], float)
assert_raises(ValueError, svds, x, k=-1)
assert_raises(ValueError, svds, x, k=0)
assert_raises(ValueError, svds, x, k=10)
assert_raises(ValueError, svds, x, k=x.shape[0])
assert_raises(ValueError, svds, x, k=x.shape[1])
assert_raises(ValueError, svds, x.T, k=x.shape[0])
assert_raises(ValueError, svds, x.T, k=x.shape[1])
def test_svd_simple_real():
x = np.array([[1, 2, 3],
[3, 4, 3],
[1, 0, 2],
[0, 0, 1]], float)
y = np.array([[1, 2, 3, 8],
[3, 4, 3, 5],
[1, 0, 2, 3],
[0, 0, 1, 0]], float)
z = csc_matrix(x)
for m in [x.T, x, y, z, z.T]:
for k in range(1, min(m.shape)):
u, s, vh = sorted_svd(m, k)
su, ss, svh = svds(m, k)
m_hat = svd_estimate(u, s, vh)
sm_hat = svd_estimate(su, ss, svh)
assert_array_almost_equal_nulp(m_hat, sm_hat, nulp=1000)
def test_svd_simple_complex():
x = np.array([[1, 2, 3],
[3, 4, 3],
[1 + 1j, 0, 2],
[0, 0, 1]], complex)
y = np.array([[1, 2, 3, 8 + 5j],
[3 - 2j, 4, 3, 5],
[1, 0, 2, 3],
[0, 0, 1, 0]], complex)
z = csc_matrix(x)
for m in [x, x.T.conjugate(), x.T, y, y.conjugate(), z, z.T]:
for k in range(1, min(m.shape) - 1):
u, s, vh = sorted_svd(m, k)
su, ss, svh = svds(m, k)
m_hat = svd_estimate(u, s, vh)
sm_hat = svd_estimate(su, ss, svh)
assert_array_almost_equal_nulp(m_hat, sm_hat, nulp=1000)
def test_svd_maxiter():
# check that maxiter works as expected
x = hilbert(6)
# ARPACK shouldn't converge on such an ill-conditioned matrix with just
# one iteration
assert_raises(ArpackNoConvergence, svds, x, 1, maxiter=1, ncv=3)
# but 100 iterations should be more than enough
u, s, vt = svds(x, 1, maxiter=100, ncv=3)
assert_allclose(s, [1.7], atol=0.5)
def test_svd_return():
# check that the return_singular_vectors parameter works as expected
x = hilbert(6)
_, s, _ = sorted_svd(x, 2)
ss = svds(x, 2, return_singular_vectors=False)
assert_allclose(s, ss)
def test_svd_which():
# check that the which parameter works as expected
x = hilbert(6)
for which in ['LM', 'SM']:
_, s, _ = sorted_svd(x, 2, which=which)
ss = svds(x, 2, which=which, return_singular_vectors=False)
ss.sort()
assert_allclose(s, ss, atol=np.sqrt(1e-15))
def test_svd_v0():
# check that the v0 parameter works as expected
x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], float)
u, s, vh = svds(x, 1)
u2, s2, vh2 = svds(x, 1, v0=u[:,0])
assert_allclose(s, s2, atol=np.sqrt(1e-15))
def _check_svds(A, k, U, s, VH):
n, m = A.shape
# Check shapes.
assert_equal(U.shape, (n, k))
assert_equal(s.shape, (k,))
assert_equal(VH.shape, (k, m))
# Check that the original matrix can be reconstituted.
A_rebuilt = (U*s).dot(VH)
assert_equal(A_rebuilt.shape, A.shape)
assert_allclose(A_rebuilt, A)
# Check that U is a semi-orthogonal matrix.
UH_U = np.dot(U.T.conj(), U)
assert_equal(UH_U.shape, (k, k))
assert_allclose(UH_U, np.identity(k), atol=1e-12)
# Check that V is a semi-orthogonal matrix.
VH_V = np.dot(VH, VH.T.conj())
assert_equal(VH_V.shape, (k, k))
assert_allclose(VH_V, np.identity(k), atol=1e-12)
def test_svd_LM_ones_matrix():
# Check that svds can deal with matrix_rank less than k in LM mode.
k = 3
for n, m in (6, 5), (5, 5), (5, 6):
for t in float, complex:
A = np.ones((n, m), dtype=t)
U, s, VH = svds(A, k)
# Check some generic properties of svd.
_check_svds(A, k, U, s, VH)
# Check that the largest singular value is near sqrt(n*m)
# and the other singular values have been forced to zero.
assert_allclose(np.max(s), np.sqrt(n*m))
assert_array_equal(sorted(s)[:-1], 0)
def test_svd_LM_zeros_matrix():
# Check that svds can deal with matrices containing only zeros.
k = 1
for n, m in (3, 4), (4, 4), (4, 3):
for t in float, complex:
A = np.zeros((n, m), dtype=t)
U, s, VH = svds(A, k)
# Check some generic properties of svd.
_check_svds(A, k, U, s, VH)
# Check that the singular values are zero.
assert_array_equal(s, 0)
def test_svd_LM_zeros_matrix_gh_3452():
# Regression test for a github issue.
# https://github.com/scipy/scipy/issues/3452
# Note that for complex dype the size of this matrix is too small for k=1.
n, m, k = 4, 2, 1
A = np.zeros((n, m))
U, s, VH = svds(A, k)
# Check some generic properties of svd.
_check_svds(A, k, U, s, VH)
# Check that the singular values are zero.
assert_array_equal(s, 0)
class CheckingLinearOperator(LinearOperator):
def __init__(self, A):
self.A = A
self.dtype = A.dtype
self.shape = A.shape
def _matvec(self, x):
assert_equal(max(x.shape), np.size(x))
return self.A.dot(x)
def _rmatvec(self, x):
assert_equal(max(x.shape), np.size(x))
return self.A.T.conjugate().dot(x)
def test_svd_linop():
nmks = [(6, 7, 3),
(9, 5, 4),
(10, 8, 5)]
def reorder(args):
U, s, VH = args
j = np.argsort(s)
return U[:,j], s[j], VH[j,:]
for n, m, k in nmks:
# Test svds on a LinearOperator.
A = np.random.RandomState(52).randn(n, m)
L = CheckingLinearOperator(A)
v0 = np.ones(min(A.shape))
U1, s1, VH1 = reorder(svds(A, k, v0=v0))
U2, s2, VH2 = reorder(svds(L, k, v0=v0))
assert_allclose(np.abs(U1), np.abs(U2))
assert_allclose(s1, s2)
assert_allclose(np.abs(VH1), np.abs(VH2))
assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
np.dot(U2, np.dot(np.diag(s2), VH2)))
# Try again with which="SM".
A = np.random.RandomState(1909).randn(n, m)
L = CheckingLinearOperator(A)
U1, s1, VH1 = reorder(svds(A, k, which="SM"))
U2, s2, VH2 = reorder(svds(L, k, which="SM"))
assert_allclose(np.abs(U1), np.abs(U2))
assert_allclose(s1, s2)
assert_allclose(np.abs(VH1), np.abs(VH2))
assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
np.dot(U2, np.dot(np.diag(s2), VH2)))
if k < min(n, m) - 1:
# Complex input and explicit which="LM".
for (dt, eps) in [(complex, 1e-7), (np.complex64, 1e-3)]:
rng = np.random.RandomState(1648)
A = (rng.randn(n, m) + 1j * rng.randn(n, m)).astype(dt)
L = CheckingLinearOperator(A)
U1, s1, VH1 = reorder(svds(A, k, which="LM"))
U2, s2, VH2 = reorder(svds(L, k, which="LM"))
assert_allclose(np.abs(U1), np.abs(U2), rtol=eps)
assert_allclose(s1, s2, rtol=eps)
assert_allclose(np.abs(VH1), np.abs(VH2), rtol=eps)
assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
np.dot(U2, np.dot(np.diag(s2), VH2)), rtol=eps)
@pytest.mark.skipif(IS_PYPY, reason="Test not meaningful on PyPy")
def test_linearoperator_deallocation():
# Check that the linear operators used by the Arpack wrappers are
# deallocatable by reference counting -- they are big objects, so
# Python's cyclic GC may not collect them fast enough before
# running out of memory if eigs/eigsh are called in a tight loop.
M_d = np.eye(10)
M_s = csc_matrix(M_d)
M_o = aslinearoperator(M_d)
with assert_deallocated(lambda: arpack.SpLuInv(M_s)):
pass
with assert_deallocated(lambda: arpack.LuInv(M_d)):
pass
with assert_deallocated(lambda: arpack.IterInv(M_s)):
pass
with assert_deallocated(lambda: arpack.IterOpInv(M_o, None, 0.3)):
pass
with assert_deallocated(lambda: arpack.IterOpInv(M_o, M_o, 0.3)):
pass
def test_svds_partial_return():
x = np.array([[1, 2, 3],
[3, 4, 3],
[1, 0, 2],
[0, 0, 1]], float)
# test vertical matrix
z = csr_matrix(x)
vh_full = svds(z, 2)[-1]
vh_partial = svds(z, 2, return_singular_vectors='vh')[-1]
dvh = np.linalg.norm(np.abs(vh_full) - np.abs(vh_partial))
if dvh > 1e-10:
raise AssertionError('right eigenvector matrices differ when using return_singular_vectors parameter')
if svds(z, 2, return_singular_vectors='vh')[0] is not None:
raise AssertionError('left eigenvector matrix was computed when it should not have been')
# test horizontal matrix
z = csr_matrix(x.T)
u_full = svds(z, 2)[0]
u_partial = svds(z, 2, return_singular_vectors='vh')[0]
du = np.linalg.norm(np.abs(u_full) - np.abs(u_partial))
if du > 1e-10:
raise AssertionError('left eigenvector matrices differ when using return_singular_vectors parameter')
if svds(z, 2, return_singular_vectors='u')[-1] is not None:
raise AssertionError('right eigenvector matrix was computed when it should not have been')
def test_svds_wrong_eigen_type():
# Regression test for a github issue.
# https://github.com/scipy/scipy/issues/4590
# Function was not checking for eigenvalue type and unintended
# values could be returned.
x = np.array([[1, 2, 3],
[3, 4, 3],
[1, 0, 2],
[0, 0, 1]], float)
assert_raises(ValueError, svds, x, 1, which='LA')
def test_parallel_threads():
results = []
v0 = np.random.rand(50)
def worker():
x = diags([1, -2, 1], [-1, 0, 1], shape=(50, 50))
w, v = eigs(x, k=3, v0=v0)
results.append(w)
w, v = eigsh(x, k=3, v0=v0)
results.append(w)
threads = [threading.Thread(target=worker) for k in range(10)]
for t in threads:
t.start()
for t in threads:
t.join()
worker()
for r in results:
assert_allclose(r, results[-1])
def test_reentering():
# Just some linear operator that calls eigs recursively
def A_matvec(x):
x = diags([1, -2, 1], [-1, 0, 1], shape=(50, 50))
w, v = eigs(x, k=1)
return v / w[0]
A = LinearOperator(matvec=A_matvec, dtype=float, shape=(50, 50))
# The Fortran code is not reentrant, so this fails (gracefully, not crashing)
assert_raises(RuntimeError, eigs, A, k=1)
assert_raises(RuntimeError, eigsh, A, k=1)
def test_regression_arpackng_1315():
# Check that issue arpack-ng/#1315 is not present.
# Adapted from arpack-ng/TESTS/bug_1315_single.c
# If this fails, then the installed ARPACK library is faulty.
for dtype in [np.float32, np.float64]:
np.random.seed(1234)
w0 = np.arange(1, 1000+1).astype(dtype)
A = diags([w0], [0], shape=(1000, 1000))
v0 = np.random.rand(1000).astype(dtype)
w, v = eigs(A, k=9, ncv=2*9+1, which="LM", v0=v0)
assert_allclose(np.sort(w), np.sort(w0[-9:]),
rtol=1e-4)
def test_eigs_for_k_greater():
# Test eigs() for k beyond limits.
A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)) # sparse
A = generate_matrix(4, sparse=False)
M_dense = np.random.random((4, 4))
M_sparse = generate_matrix(4, sparse=True)
M_linop = aslinearoperator(M_dense)
eig_tuple1 = eig(A, b=M_dense)
eig_tuple2 = eig(A, b=M_sparse)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
assert_equal(eigs(A, M=M_dense, k=3), eig_tuple1)
assert_equal(eigs(A, M=M_dense, k=4), eig_tuple1)
assert_equal(eigs(A, M=M_dense, k=5), eig_tuple1)
assert_equal(eigs(A, M=M_sparse, k=5), eig_tuple2)
# M as LinearOperator
assert_raises(TypeError, eigs, A, M=M_linop, k=3)
# Test 'A' for different types
assert_raises(TypeError, eigs, aslinearoperator(A), k=3)
assert_raises(TypeError, eigs, A_sparse, k=3)
def test_eigsh_for_k_greater():
# Test eigsh() for k beyond limits.
A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)) # sparse
A = generate_matrix(4, sparse=False)
M_dense = generate_matrix_symmetric(4, pos_definite=True)
M_sparse = generate_matrix_symmetric(4, pos_definite=True, sparse=True)
M_linop = aslinearoperator(M_dense)
eig_tuple1 = eigh(A, b=M_dense)
eig_tuple2 = eigh(A, b=M_sparse)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
assert_equal(eigsh(A, M=M_dense, k=4), eig_tuple1)
assert_equal(eigsh(A, M=M_dense, k=5), eig_tuple1)
assert_equal(eigsh(A, M=M_sparse, k=5), eig_tuple2)
# M as LinearOperator
assert_raises(TypeError, eigsh, A, M=M_linop, k=4)
# Test 'A' for different types
assert_raises(TypeError, eigsh, aslinearoperator(A), k=4)
assert_raises(TypeError, eigsh, A_sparse, M=M_dense, k=4)
|