File: iterative.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (754 lines) | stat: -rw-r--r-- 24,841 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
"""Iterative methods for solving linear systems"""

from __future__ import division, print_function, absolute_import

__all__ = ['bicg','bicgstab','cg','cgs','gmres','qmr']

import warnings
import numpy as np

from . import _iterative

from scipy.sparse.linalg.interface import LinearOperator
from scipy._lib.decorator import decorator
from .utils import make_system
from scipy._lib._util import _aligned_zeros
from scipy._lib._threadsafety import non_reentrant

_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'}


# Part of the docstring common to all iterative solvers
common_doc1 = \
"""
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}"""

common_doc2 = \
"""b : {array, matrix}
    Right hand side of the linear system. Has shape (N,) or (N,1).

Returns
-------
x : {array, matrix}
    The converged solution.
info : integer
    Provides convergence information:
        0  : successful exit
        >0 : convergence to tolerance not achieved, number of iterations
        <0 : illegal input or breakdown

Other Parameters
----------------
x0  : {array, matrix}
    Starting guess for the solution.
tol, atol : float, optional
    Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
    The default for ``atol`` is ``'legacy'``, which emulates
    a different legacy behavior.

    .. warning::

       The default value for `atol` will be changed in a future release.
       For future compatibility, specify `atol` explicitly.
maxiter : integer
    Maximum number of iterations.  Iteration will stop after maxiter
    steps even if the specified tolerance has not been achieved.
M : {sparse matrix, dense matrix, LinearOperator}
    Preconditioner for A.  The preconditioner should approximate the
    inverse of A.  Effective preconditioning dramatically improves the
    rate of convergence, which implies that fewer iterations are needed
    to reach a given error tolerance.
callback : function
    User-supplied function to call after each iteration.  It is called
    as callback(xk), where xk is the current solution vector.

"""


def _stoptest(residual, atol):
    """
    Successful termination condition for the solvers.
    """
    resid = np.linalg.norm(residual)
    if resid <= atol:
        return resid, 1
    else:
        return resid, 0


def _get_atol(tol, atol, bnrm2, get_residual, routine_name):
    """
    Parse arguments for absolute tolerance in termination condition.

    Parameters
    ----------
    tol, atol : object
        The arguments passed into the solver routine by user.
    bnrm2 : float
        2-norm of the rhs vector.
    get_residual : callable
        Callable ``get_residual()`` that returns the initial value of
        the residual.
    routine_name : str
        Name of the routine.
    """

    if atol is None:
        warnings.warn("scipy.sparse.linalg.{name} called without specifying `atol`. "
                      "The default value will be changed in a future release. "
                      "For compatibility, specify a value for `atol` explicitly, e.g., "
                      "``{name}(..., atol=0)``, or to retain the old behavior "
                      "``{name}(..., atol='legacy')``".format(name=routine_name),
                      category=DeprecationWarning, stacklevel=4)
        atol = 'legacy'

    tol = float(tol)

    if atol == 'legacy':
        # emulate old legacy behavior
        resid = get_residual()
        if resid <= tol:
            return 'exit'
        if bnrm2 == 0:
            return tol
        else:
            return tol * float(bnrm2)
    else:
        return max(float(atol), tol * float(bnrm2))


def set_docstring(header, Ainfo, footer='', atol_default='0'):
    def combine(fn):
        fn.__doc__ = '\n'.join((header, common_doc1,
                                '    ' + Ainfo.replace('\n', '\n    '),
                                common_doc2, footer))
        return fn
    return combine


@set_docstring('Use BIConjugate Gradient iteration to solve ``Ax = b``.',
               'The real or complex N-by-N matrix of the linear system.\n'
               'It is required that the linear operator can produce\n'
               '``Ax`` and ``A^T x``.')
@non_reentrant()
def bicg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
    A,M,x,b,postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec, rmatvec = A.matvec, A.rmatvec
    psolve, rpsolve = M.matvec, M.rmatvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'bicgrevcom')

    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicg')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(6*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 4):
            work[slice1] = rpsolve(work[slice2])
        elif (ijob == 5):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 6):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info


@set_docstring('Use BIConjugate Gradient STABilized iteration to solve '
               '``Ax = b``.',
               'The real or complex N-by-N matrix of the linear system.')
@non_reentrant()
def bicgstab(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'bicgstabrevcom')

    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicgstab')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(7*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info


@set_docstring('Use Conjugate Gradient iteration to solve ``Ax = b``.',
               'The real or complex N-by-N matrix of the linear system.\n'
               '``A`` must represent a hermitian, positive definite matrix.')
@non_reentrant()
def cg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'cgrevcom')

    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cg')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(4*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
            if info == 1 and iter_ > 1:
                # recompute residual and recheck, to avoid
                # accumulating rounding error
                work[slice1] = b - matvec(x)
                resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info


@set_docstring('Use Conjugate Gradient Squared iteration to solve ``Ax = b``.',
               'The real-valued N-by-N matrix of the linear system.')
@non_reentrant()
def cgs(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'cgsrevcom')

    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cgs')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(7*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
            if info == 1 and iter_ > 1:
                # recompute residual and recheck, to avoid
                # accumulating rounding error
                work[slice1] = b - matvec(x)
                resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info == -10:
        # termination due to breakdown: check for convergence
        resid, ok = _stoptest(b - matvec(x), atol)
        if ok:
            info = 0

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info


@non_reentrant()
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, M=None, callback=None,
          restrt=None, atol=None):
    """
    Use Generalized Minimal RESidual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : int
        Provides convergence information:
          * 0  : successful exit
          * >0 : convergence to tolerance not achieved, number of iterations
          * <0 : illegal input or breakdown

    Other parameters
    ----------------
    x0 : {array, matrix}
        Starting guess for the solution (a vector of zeros by default).
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    restart : int, optional
        Number of iterations between restarts. Larger values increase
        iteration cost, but may be necessary for convergence.
        Default is 20.
    maxiter : int, optional
        Maximum number of iterations (restart cycles).  Iteration will stop
        after maxiter steps even if the specified tolerance has not been
        achieved.
    M : {sparse matrix, dense matrix, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(rk), where rk is the current residual vector.
    restrt : int, optional
        DEPRECATED - use `restart` instead.

    See Also
    --------
    LinearOperator

    Notes
    -----
    A preconditioner, P, is chosen such that P is close to A but easy to solve
    for. The preconditioner parameter required by this routine is
    ``M = P^-1``. The inverse should preferably not be calculated
    explicitly.  Rather, use the following template to produce M::

      # Construct a linear operator that computes P^-1 * x.
      import scipy.sparse.linalg as spla
      M_x = lambda x: spla.spsolve(P, x)
      M = spla.LinearOperator((n, n), M_x)

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import gmres
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = gmres(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """

    # Change 'restrt' keyword to 'restart'
    if restrt is None:
        restrt = restart
    elif restart is not None:
        raise ValueError("Cannot specify both restart and restrt keywords. "
                         "Preferably use 'restart' only.")

    A, M, x, b,postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    if restrt is None:
        restrt = 20
    restrt = min(restrt, n)

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'gmresrevcom')

    bnrm2 = np.linalg.norm(b)
    Mb_nrm2 = np.linalg.norm(psolve(b))
    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, bnrm2, get_residual, 'gmres')
    if atol == 'exit':
        return postprocess(x), 0

    if bnrm2 == 0:
        return postprocess(b), 0

    # Tolerance passed to GMRESREVCOM applies to the inner iteration
    # and deals with the left-preconditioned residual.
    ptol_max_factor = 1.0
    ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2)
    resid = np.nan
    presid = np.nan
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros((6+restrt)*n,dtype=x.dtype)
    work2 = _aligned_zeros((restrt+1)*(2*restrt+2),dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    old_ijob = ijob
    first_pass = True
    resid_ready = False
    iter_num = 1
    while True:
        x, iter_, presid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, restrt, work, work2, iter_, presid, info, ndx1, ndx2, ijob, ptol)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):  # gmres success, update last residual
            if resid_ready and callback is not None:
                callback(presid / bnrm2)
                resid_ready = False
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
            if not first_pass and old_ijob == 3:
                resid_ready = True

            first_pass = False
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
            if resid_ready and callback is not None:
                callback(presid / bnrm2)
                resid_ready = False
                iter_num = iter_num+1

        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)

            # Inner loop tolerance control
            if info or presid > ptol:
                ptol_max_factor = min(1.0, 1.5 * ptol_max_factor)
            else:
                # Inner loop tolerance OK, but outer loop not.
                ptol_max_factor = max(1e-16, 0.25 * ptol_max_factor)

            if resid != 0:
                ptol = presid * min(ptol_max_factor, atol / resid)
            else:
                ptol = presid * ptol_max_factor

        old_ijob = ijob
        ijob = 2

        if iter_num > maxiter:
            info = maxiter
            break

    if info >= 0 and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = maxiter
        
    return postprocess(x), info


@non_reentrant()
def qmr(A, b, x0=None, tol=1e-5, maxiter=None, M1=None, M2=None, callback=None,
        atol=None):
    """Use Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real-valued N-by-N matrix of the linear system.
        It is required that the linear operator can produce
        ``Ax`` and ``A^T x``.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    Other Parameters
    ----------------
    x0  : {array, matrix}
        Starting guess for the solution.
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M1 : {sparse matrix, dense matrix, LinearOperator}
        Left preconditioner for A.
    M2 : {sparse matrix, dense matrix, LinearOperator}
        Right preconditioner for A. Used together with the left
        preconditioner M1.  The matrix M1*A*M2 should have better
        conditioned than A alone.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.

    See Also
    --------
    LinearOperator

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import qmr
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = qmr(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """
    A_ = A
    A, M, x, b, postprocess = make_system(A, None, x0, b)

    if M1 is None and M2 is None:
        if hasattr(A_,'psolve'):
            def left_psolve(b):
                return A_.psolve(b,'left')

            def right_psolve(b):
                return A_.psolve(b,'right')

            def left_rpsolve(b):
                return A_.rpsolve(b,'left')

            def right_rpsolve(b):
                return A_.rpsolve(b,'right')
            M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve)
            M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve)
        else:
            def id(b):
                return b
            M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
            M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'qmrrevcom')

    get_residual = lambda: np.linalg.norm(A.matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'qmr')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(11*n,x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = M1.matvec(work[slice2])
        elif (ijob == 4):
            work[slice1] = M2.matvec(work[slice2])
        elif (ijob == 5):
            work[slice1] = M1.rmatvec(work[slice2])
        elif (ijob == 6):
            work[slice1] = M2.rmatvec(work[slice2])
        elif (ijob == 7):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(x)
        elif (ijob == 8):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info