File: test_lgmres.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (203 lines) | stat: -rw-r--r-- 6,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Tests for the linalg.isolve.lgmres module
"""

from __future__ import division, print_function, absolute_import

from numpy.testing import assert_, assert_allclose, assert_equal

import numpy as np
from numpy import zeros, array, allclose
from scipy.linalg import norm
from scipy.sparse import csr_matrix, eye, rand

from scipy.sparse.linalg.interface import LinearOperator
from scipy.sparse.linalg import splu
from scipy.sparse.linalg.isolve import lgmres, gmres

from scipy._lib._numpy_compat import suppress_warnings

Am = csr_matrix(array([[-2,1,0,0,0,9],
                       [1,-2,1,0,5,0],
                       [0,1,-2,1,0,0],
                       [0,0,1,-2,1,0],
                       [0,3,0,1,-2,1],
                       [1,0,0,0,1,-2]]))
b = array([1,2,3,4,5,6])
count = [0]


def matvec(v):
    count[0] += 1
    return Am*v


A = LinearOperator(matvec=matvec, shape=Am.shape, dtype=Am.dtype)


def do_solve(**kw):
    count[0] = 0
    with suppress_warnings() as sup:
        sup.filter(DeprecationWarning, ".*called without specifying.*")
        x0, flag = lgmres(A, b, x0=zeros(A.shape[0]), inner_m=6, tol=1e-14, **kw)
    count_0 = count[0]
    assert_(allclose(A*x0, b, rtol=1e-12, atol=1e-12), norm(A*x0-b))
    return x0, count_0


class TestLGMRES(object):
    def test_preconditioner(self):
        # Check that preconditioning works
        pc = splu(Am.tocsc())
        M = LinearOperator(matvec=pc.solve, shape=A.shape, dtype=A.dtype)

        x0, count_0 = do_solve()
        x1, count_1 = do_solve(M=M)

        assert_(count_1 == 3)
        assert_(count_1 < count_0/2)
        assert_(allclose(x1, x0, rtol=1e-14))

    def test_outer_v(self):
        # Check that the augmentation vectors behave as expected

        outer_v = []
        x0, count_0 = do_solve(outer_k=6, outer_v=outer_v)
        assert_(len(outer_v) > 0)
        assert_(len(outer_v) <= 6)

        x1, count_1 = do_solve(outer_k=6, outer_v=outer_v, prepend_outer_v=True)
        assert_(count_1 == 2, count_1)
        assert_(count_1 < count_0/2)
        assert_(allclose(x1, x0, rtol=1e-14))

        # ---

        outer_v = []
        x0, count_0 = do_solve(outer_k=6, outer_v=outer_v, store_outer_Av=False)
        assert_(array([v[1] is None for v in outer_v]).all())
        assert_(len(outer_v) > 0)
        assert_(len(outer_v) <= 6)

        x1, count_1 = do_solve(outer_k=6, outer_v=outer_v, prepend_outer_v=True)
        assert_(count_1 == 3, count_1)
        assert_(count_1 < count_0/2)
        assert_(allclose(x1, x0, rtol=1e-14))

    def test_arnoldi(self):
        np.random.rand(1234)

        A = eye(10000) + rand(10000,10000,density=1e-4)
        b = np.random.rand(10000)

        # The inner arnoldi should be equivalent to gmres
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            x0, flag0 = lgmres(A, b, x0=zeros(A.shape[0]), inner_m=15, maxiter=1)
            x1, flag1 = gmres(A, b, x0=zeros(A.shape[0]), restart=15, maxiter=1)

        assert_equal(flag0, 1)
        assert_equal(flag1, 1)
        assert_(np.linalg.norm(A.dot(x0) - b) > 1e-3)

        assert_allclose(x0, x1)

    def test_cornercase(self):
        np.random.seed(1234)

        # Rounding error may prevent convergence with tol=0 --- ensure
        # that the return values in this case are correct, and no
        # exceptions are raised

        for n in [3, 5, 10, 100]:
            A = 2*eye(n)

            with suppress_warnings() as sup:
                sup.filter(DeprecationWarning, ".*called without specifying.*")

                b = np.ones(n)
                x, info = lgmres(A, b, maxiter=10)
                assert_equal(info, 0)
                assert_allclose(A.dot(x) - b, 0, atol=1e-14)

                x, info = lgmres(A, b, tol=0, maxiter=10)
                if info == 0:
                    assert_allclose(A.dot(x) - b, 0, atol=1e-14)

                b = np.random.rand(n)
                x, info = lgmres(A, b, maxiter=10)
                assert_equal(info, 0)
                assert_allclose(A.dot(x) - b, 0, atol=1e-14)

                x, info = lgmres(A, b, tol=0, maxiter=10)
                if info == 0:
                    assert_allclose(A.dot(x) - b, 0, atol=1e-14)

    def test_nans(self):
        A = eye(3, format='lil')
        A[1,1] = np.nan
        b = np.ones(3)

        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            x, info = lgmres(A, b, tol=0, maxiter=10)
            assert_equal(info, 1)

    def test_breakdown_with_outer_v(self):
        A = np.array([[1, 2], [3, 4]], dtype=float)
        b = np.array([1, 2])

        x = np.linalg.solve(A, b)
        v0 = np.array([1, 0])

        # The inner iteration should converge to the correct solution,
        # since it's in the outer vector list
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            xp, info = lgmres(A, b, outer_v=[(v0, None), (x, None)], maxiter=1)

        assert_allclose(xp, x, atol=1e-12)

    def test_breakdown_underdetermined(self):
        # Should find LSQ solution in the Krylov span in one inner
        # iteration, despite solver breakdown from nilpotent A.
        A = np.array([[0, 1, 1, 1],
                      [0, 0, 1, 1],
                      [0, 0, 0, 1],
                      [0, 0, 0, 0]], dtype=float)

        bs = [
            np.array([1, 1, 1, 1]),
            np.array([1, 1, 1, 0]),
            np.array([1, 1, 0, 0]),
            np.array([1, 0, 0, 0]),
        ]

        for b in bs:
            with suppress_warnings() as sup:
                sup.filter(DeprecationWarning, ".*called without specifying.*")
                xp, info = lgmres(A, b, maxiter=1)
            resp = np.linalg.norm(A.dot(xp) - b)

            K = np.c_[b, A.dot(b), A.dot(A.dot(b)), A.dot(A.dot(A.dot(b)))]
            y, _, _, _ = np.linalg.lstsq(A.dot(K), b, rcond=-1)
            x = K.dot(y)
            res = np.linalg.norm(A.dot(x) - b)

            assert_allclose(resp, res, err_msg=repr(b))

    def test_denormals(self):
        # Check that no warnings are emitted if the matrix contains
        # numbers for which 1/x has no float representation, and that
        # the solver behaves properly.
        A = np.array([[1, 2], [3, 4]], dtype=float)
        A *= 100 * np.nextafter(0, 1)

        b = np.array([1, 1])

        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            xp, info = lgmres(A, b)

        if info == 0:
            assert_allclose(A.dot(xp), b)