1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import (assert_, assert_equal, assert_almost_equal,
assert_array_almost_equal)
from scipy._lib.six import xrange
import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse.linalg import lsqr
from time import time
# Set up a test problem
n = 35
G = np.eye(n)
normal = np.random.normal
norm = np.linalg.norm
for jj in xrange(5):
gg = normal(size=n)
hh = gg * gg.T
G += (hh + hh.T) * 0.5
G += normal(size=n) * normal(size=n)
b = normal(size=n)
tol = 1e-10
show = False
maxit = None
def test_basic():
b_copy = b.copy()
X = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit)
assert_(np.all(b_copy == b))
svx = np.linalg.solve(G, b)
xo = X[0]
assert_(norm(svx - xo) < 1e-5)
def test_gh_2466():
row = np.array([0, 0])
col = np.array([0, 1])
val = np.array([1, -1])
A = scipy.sparse.coo_matrix((val, (row, col)), shape=(1, 2))
b = np.asarray([4])
lsqr(A, b)
def test_well_conditioned_problems():
# Test that sparse the lsqr solver returns the right solution
# on various problems with different random seeds.
# This is a non-regression test for a potential ZeroDivisionError
# raised when computing the `test2` & `test3` convergence conditions.
n = 10
A_sparse = scipy.sparse.eye(n, n)
A_dense = A_sparse.toarray()
with np.errstate(invalid='raise'):
for seed in range(30):
rng = np.random.RandomState(seed + 10)
beta = rng.rand(n)
beta[beta == 0] = 0.00001 # ensure that all the betas are not null
b = A_sparse * beta[:, np.newaxis]
output = lsqr(A_sparse, b, show=show)
# Check that the termination condition corresponds to an approximate
# solution to Ax = b
assert_equal(output[1], 1)
solution = output[0]
# Check that we recover the ground truth solution
assert_array_almost_equal(solution, beta)
# Sanity check: compare to the dense array solver
reference_solution = np.linalg.solve(A_dense, b).ravel()
assert_array_almost_equal(solution, reference_solution)
def test_b_shapes():
# Test b being a scalar.
A = np.array([[1.0, 2.0]])
b = 3.0
x = lsqr(A, b)[0]
assert_almost_equal(norm(A.dot(x) - b), 0)
# Test b being a column vector.
A = np.eye(10)
b = np.ones((10, 1))
x = lsqr(A, b)[0]
assert_almost_equal(norm(A.dot(x) - b.ravel()), 0)
def test_initialization():
# Test the default setting is the same as zeros
b_copy = b.copy()
x_ref = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit)
x0 = np.zeros(x_ref[0].shape)
x = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit, x0=x0)
assert_(np.all(b_copy == b))
assert_array_almost_equal(x_ref[0], x[0])
# Test warm-start with single iteration
x0 = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=1)[0]
x = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit, x0=x0)
assert_array_almost_equal(x_ref[0], x[0])
assert_(np.all(b_copy == b))
if __name__ == "__main__":
svx = np.linalg.solve(G, b)
tic = time()
X = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit)
xo = X[0]
phio = X[3]
psio = X[7]
k = X[2]
chio = X[8]
mg = np.amax(G - G.T)
if mg > 1e-14:
sym = 'No'
else:
sym = 'Yes'
print('LSQR')
print("Is linear operator symmetric? " + sym)
print("n: %3g iterations: %3g" % (n, k))
print("Norms computed in %.2fs by LSQR" % (time() - tic))
print(" ||x|| %9.4e ||r|| %9.4e ||Ar|| %9.4e " % (chio, phio, psio))
print("Residual norms computed directly:")
print(" ||x|| %9.4e ||r|| %9.4e ||Ar|| %9.4e" % (norm(xo),
norm(G*xo - b),
norm(G.T*(G*xo-b))))
print("Direct solution norms:")
print(" ||x|| %9.4e ||r|| %9.4e " % (norm(svx), norm(G*svx - b)))
print("")
print(" || x_{direct} - x_{LSQR}|| %9.4e " % norm(svx-xo))
print("")
|