1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
"""Test functions for the sparse.linalg.interface module
"""
from __future__ import division, print_function, absolute_import
from functools import partial
from itertools import product
import operator
import pytest
from pytest import raises as assert_raises
from numpy.testing import assert_, assert_equal
import numpy as np
import scipy.sparse as sparse
from scipy.sparse.linalg import interface
from scipy.sparse.sputils import matrix
# Only test matmul operator (A @ B) when available (Python 3.5+)
TEST_MATMUL = hasattr(operator, 'matmul')
class TestLinearOperator(object):
def setup_method(self):
self.A = np.array([[1,2,3],
[4,5,6]])
self.B = np.array([[1,2],
[3,4],
[5,6]])
self.C = np.array([[1,2],
[3,4]])
def test_matvec(self):
def get_matvecs(A):
return [{
'shape': A.shape,
'matvec': lambda x: np.dot(A, x).reshape(A.shape[0]),
'rmatvec': lambda x: np.dot(A.T.conj(),
x).reshape(A.shape[1])
},
{
'shape': A.shape,
'matvec': lambda x: np.dot(A, x),
'rmatvec': lambda x: np.dot(A.T.conj(), x),
'matmat': lambda x: np.dot(A, x)
}]
for matvecs in get_matvecs(self.A):
A = interface.LinearOperator(**matvecs)
assert_(A.args == ())
assert_equal(A.matvec(np.array([1,2,3])), [14,32])
assert_equal(A.matvec(np.array([[1],[2],[3]])), [[14],[32]])
assert_equal(A * np.array([1,2,3]), [14,32])
assert_equal(A * np.array([[1],[2],[3]]), [[14],[32]])
assert_equal(A.dot(np.array([1,2,3])), [14,32])
assert_equal(A.dot(np.array([[1],[2],[3]])), [[14],[32]])
assert_equal(A.matvec(matrix([[1],[2],[3]])), [[14],[32]])
assert_equal(A * matrix([[1],[2],[3]]), [[14],[32]])
assert_equal(A.dot(matrix([[1],[2],[3]])), [[14],[32]])
assert_equal((2*A)*[1,1,1], [12,30])
assert_equal((2*A).rmatvec([1,1]), [10, 14, 18])
assert_equal((2*A).H.matvec([1,1]), [10, 14, 18])
assert_equal((2*A)*[[1],[1],[1]], [[12],[30]])
assert_equal((2*A).matmat([[1],[1],[1]]), [[12],[30]])
assert_equal((A*2)*[1,1,1], [12,30])
assert_equal((A*2)*[[1],[1],[1]], [[12],[30]])
assert_equal((2j*A)*[1,1,1], [12j,30j])
assert_equal((A+A)*[1,1,1], [12, 30])
assert_equal((A+A).rmatvec([1,1]), [10, 14, 18])
assert_equal((A+A).H.matvec([1,1]), [10, 14, 18])
assert_equal((A+A)*[[1],[1],[1]], [[12], [30]])
assert_equal((A+A).matmat([[1],[1],[1]]), [[12], [30]])
assert_equal((-A)*[1,1,1], [-6,-15])
assert_equal((-A)*[[1],[1],[1]], [[-6],[-15]])
assert_equal((A-A)*[1,1,1], [0,0])
assert_equal((A-A)*[[1],[1],[1]], [[0],[0]])
z = A+A
assert_(len(z.args) == 2 and z.args[0] is A and z.args[1] is A)
z = 2*A
assert_(len(z.args) == 2 and z.args[0] is A and z.args[1] == 2)
assert_(isinstance(A.matvec([1, 2, 3]), np.ndarray))
assert_(isinstance(A.matvec(np.array([[1],[2],[3]])), np.ndarray))
assert_(isinstance(A * np.array([1,2,3]), np.ndarray))
assert_(isinstance(A * np.array([[1],[2],[3]]), np.ndarray))
assert_(isinstance(A.dot(np.array([1,2,3])), np.ndarray))
assert_(isinstance(A.dot(np.array([[1],[2],[3]])), np.ndarray))
assert_(isinstance(A.matvec(matrix([[1],[2],[3]])), np.ndarray))
assert_(isinstance(A * matrix([[1],[2],[3]]), np.ndarray))
assert_(isinstance(A.dot(matrix([[1],[2],[3]])), np.ndarray))
assert_(isinstance(2*A, interface._ScaledLinearOperator))
assert_(isinstance(2j*A, interface._ScaledLinearOperator))
assert_(isinstance(A+A, interface._SumLinearOperator))
assert_(isinstance(-A, interface._ScaledLinearOperator))
assert_(isinstance(A-A, interface._SumLinearOperator))
assert_((2j*A).dtype == np.complex_)
assert_raises(ValueError, A.matvec, np.array([1,2]))
assert_raises(ValueError, A.matvec, np.array([1,2,3,4]))
assert_raises(ValueError, A.matvec, np.array([[1],[2]]))
assert_raises(ValueError, A.matvec, np.array([[1],[2],[3],[4]]))
assert_raises(ValueError, lambda: A*A)
assert_raises(ValueError, lambda: A**2)
for matvecsA, matvecsB in product(get_matvecs(self.A),
get_matvecs(self.B)):
A = interface.LinearOperator(**matvecsA)
B = interface.LinearOperator(**matvecsB)
assert_equal((A*B)*[1,1], [50,113])
assert_equal((A*B)*[[1],[1]], [[50],[113]])
assert_equal((A*B).matmat([[1],[1]]), [[50],[113]])
assert_equal((A*B).rmatvec([1,1]), [71,92])
assert_equal((A*B).H.matvec([1,1]), [71,92])
assert_(isinstance(A*B, interface._ProductLinearOperator))
assert_raises(ValueError, lambda: A+B)
assert_raises(ValueError, lambda: A**2)
z = A*B
assert_(len(z.args) == 2 and z.args[0] is A and z.args[1] is B)
for matvecsC in get_matvecs(self.C):
C = interface.LinearOperator(**matvecsC)
assert_equal((C**2)*[1,1], [17,37])
assert_equal((C**2).rmatvec([1,1]), [22,32])
assert_equal((C**2).H.matvec([1,1]), [22,32])
assert_equal((C**2).matmat([[1],[1]]), [[17],[37]])
assert_(isinstance(C**2, interface._PowerLinearOperator))
def test_matmul(self):
if not TEST_MATMUL:
pytest.skip("matmul is only tested in Python 3.5+")
D = {'shape': self.A.shape,
'matvec': lambda x: np.dot(self.A, x).reshape(self.A.shape[0]),
'rmatvec': lambda x: np.dot(self.A.T.conj(),
x).reshape(self.A.shape[1]),
'matmat': lambda x: np.dot(self.A, x)}
A = interface.LinearOperator(**D)
B = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
b = B[0]
assert_equal(operator.matmul(A, b), A * b)
assert_equal(operator.matmul(A, B), A * B)
assert_raises(ValueError, operator.matmul, A, 2)
assert_raises(ValueError, operator.matmul, 2, A)
class TestAsLinearOperator(object):
def setup_method(self):
self.cases = []
def make_cases(dtype):
self.cases.append(matrix([[1,2,3],[4,5,6]], dtype=dtype))
self.cases.append(np.array([[1,2,3],[4,5,6]], dtype=dtype))
self.cases.append(sparse.csr_matrix([[1,2,3],[4,5,6]], dtype=dtype))
# Test default implementations of _adjoint and _rmatvec, which
# refer to each other.
def mv(x, dtype):
y = np.array([1 * x[0] + 2 * x[1] + 3 * x[2],
4 * x[0] + 5 * x[1] + 6 * x[2]], dtype=dtype)
if len(x.shape) == 2:
y = y.reshape(-1, 1)
return y
def rmv(x, dtype):
return np.array([1 * x[0] + 4 * x[1],
2 * x[0] + 5 * x[1],
3 * x[0] + 6 * x[1]], dtype=dtype)
class BaseMatlike(interface.LinearOperator):
def __init__(self, dtype):
self.dtype = np.dtype(dtype)
self.shape = (2,3)
def _matvec(self, x):
return mv(x, self.dtype)
class HasRmatvec(BaseMatlike):
def _rmatvec(self,x):
return rmv(x, self.dtype)
class HasAdjoint(BaseMatlike):
def _adjoint(self):
shape = self.shape[1], self.shape[0]
matvec = partial(rmv, dtype=self.dtype)
rmatvec = partial(mv, dtype=self.dtype)
return interface.LinearOperator(matvec=matvec,
rmatvec=rmatvec,
dtype=self.dtype,
shape=shape)
self.cases.append(HasRmatvec(dtype))
self.cases.append(HasAdjoint(dtype))
make_cases('int32')
make_cases('float32')
make_cases('float64')
def test_basic(self):
for M in self.cases:
A = interface.aslinearoperator(M)
M,N = A.shape
assert_equal(A.matvec(np.array([1,2,3])), [14,32])
assert_equal(A.matvec(np.array([[1],[2],[3]])), [[14],[32]])
assert_equal(A * np.array([1,2,3]), [14,32])
assert_equal(A * np.array([[1],[2],[3]]), [[14],[32]])
assert_equal(A.rmatvec(np.array([1,2])), [9,12,15])
assert_equal(A.rmatvec(np.array([[1],[2]])), [[9],[12],[15]])
assert_equal(A.H.matvec(np.array([1,2])), [9,12,15])
assert_equal(A.H.matvec(np.array([[1],[2]])), [[9],[12],[15]])
assert_equal(
A.matmat(np.array([[1,4],[2,5],[3,6]])),
[[14,32],[32,77]])
assert_equal(A * np.array([[1,4],[2,5],[3,6]]), [[14,32],[32,77]])
if hasattr(M,'dtype'):
assert_equal(A.dtype, M.dtype)
def test_dot(self):
for M in self.cases:
A = interface.aslinearoperator(M)
M,N = A.shape
assert_equal(A.dot(np.array([1,2,3])), [14,32])
assert_equal(A.dot(np.array([[1],[2],[3]])), [[14],[32]])
assert_equal(
A.dot(np.array([[1,4],[2,5],[3,6]])),
[[14,32],[32,77]])
def test_repr():
A = interface.LinearOperator(shape=(1, 1), matvec=lambda x: 1)
repr_A = repr(A)
assert_('unspecified dtype' not in repr_A, repr_A)
def test_identity():
ident = interface.IdentityOperator((3, 3))
assert_equal(ident * [1, 2, 3], [1, 2, 3])
assert_equal(ident.dot(np.arange(9).reshape(3, 3)).ravel(), np.arange(9))
assert_raises(ValueError, ident.matvec, [1, 2, 3, 4])
def test_attributes():
A = interface.aslinearoperator(np.arange(16).reshape(4, 4))
def always_four_ones(x):
x = np.asarray(x)
assert_(x.shape == (3,) or x.shape == (3, 1))
return np.ones(4)
B = interface.LinearOperator(shape=(4, 3), matvec=always_four_ones)
for op in [A, B, A * B, A.H, A + A, B + B, A ** 4]:
assert_(hasattr(op, "dtype"))
assert_(hasattr(op, "shape"))
assert_(hasattr(op, "_matvec"))
def matvec(x):
""" Needed for test_pickle as local functions are not pickleable """
return np.zeros(3)
def test_pickle():
import pickle
for protocol in range(pickle.HIGHEST_PROTOCOL + 1):
A = interface.LinearOperator((3, 3), matvec)
s = pickle.dumps(A, protocol=protocol)
B = pickle.loads(s)
for k in A.__dict__:
assert_equal(getattr(A, k), getattr(B, k))
def test_inheritance():
class Empty(interface.LinearOperator):
pass
assert_raises(TypeError, Empty)
class Identity(interface.LinearOperator):
def __init__(self, n):
super(Identity, self).__init__(dtype=None, shape=(n, n))
def _matvec(self, x):
return x
id3 = Identity(3)
assert_equal(id3.matvec([1, 2, 3]), [1, 2, 3])
assert_raises(NotImplementedError, id3.rmatvec, [4, 5, 6])
class MatmatOnly(interface.LinearOperator):
def __init__(self, A):
super(MatmatOnly, self).__init__(A.dtype, A.shape)
self.A = A
def _matmat(self, x):
return self.A.dot(x)
mm = MatmatOnly(np.random.randn(5, 3))
assert_equal(mm.matvec(np.random.randn(3)).shape, (5,))
def test_dtypes_of_operator_sum():
# gh-6078
mat_complex = np.random.rand(2,2) + 1j * np.random.rand(2,2)
mat_real = np.random.rand(2,2)
complex_operator = interface.aslinearoperator(mat_complex)
real_operator = interface.aslinearoperator(mat_real)
sum_complex = complex_operator + complex_operator
sum_real = real_operator + real_operator
assert_equal(sum_real.dtype, np.float64)
assert_equal(sum_complex.dtype, np.complex128)
def test_no_double_init():
call_count = [0]
def matvec(v):
call_count[0] += 1
return v
# It should call matvec exactly once (in order to determine the
# operator dtype)
A = interface.LinearOperator((2, 2), matvec=matvec)
assert_equal(call_count[0], 1)
|