File: bsr.h

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (807 lines) | stat: -rw-r--r-- 24,087 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
#ifndef __BSR_H__
#define __BSR_H__

#include <vector>
#include <algorithm>
#include <functional>

#include "csr.h"
#include "dense.h"

static inline npy_intp diagonal_size(const npy_intp k,
                                     const npy_intp rows,
                                     const npy_intp cols)
{
    return std::min(rows + std::min(k, (npy_intp)0),
                    cols - std::max(k, (npy_intp)0));
}


template <class I, class T>
void bsr_diagonal(const I k,
                  const I n_brow,
                  const I n_bcol,
                  const I R,
                  const I C,
                  const I Ap[],
                  const I Aj[],
                  const T Ax[],
                        T Yx[])
{
    const npy_intp RC = R * C;
    const npy_intp D = diagonal_size(k, (npy_intp)n_brow * R,
                                        (npy_intp)n_bcol * C);
    const npy_intp first_row = (k >= 0) ? 0 : -k;
    /* First and next-to-last brows of the diagonal. */
    const npy_intp first_brow = first_row / R;
    const npy_intp last_brow = (first_row + D - 1) / R + 1;

    for (npy_intp brow = first_brow; brow < last_brow; ++brow) {
        /* First and next-to-last bcols of the diagonal in this brow. */
        const npy_intp first_bcol = (brow * R + k) / C;
        const npy_intp last_bcol = ((brow + 1) * R + k - 1) / C + 1;

        for (npy_intp jj = Ap[brow]; jj < Ap[brow + 1]; ++jj) {
            const npy_intp bcol = Aj[jj];

            if (first_bcol <= bcol && bcol < last_bcol) {
                /*
                 * Compute and extract diagonal of block corresponding to the
                 * k-th overall diagonal and add it to output in right place.
                 */
                const npy_intp block_k = brow * R + k - bcol * C;
                const npy_intp block_D = diagonal_size(block_k, R, C);
                const npy_intp block_first_row = (block_k >= 0) ? 0 : -block_k;
                const npy_intp Y_idx = brow * R + block_first_row - first_row;
                const npy_intp Ax_idx = RC * jj +
                                        ((block_k >= 0) ? block_k :
                                                          -C * block_k);

                for (npy_intp kk = 0; kk < block_D; ++kk) {
                    Yx[Y_idx + kk] += Ax[Ax_idx + kk * (C + 1)];
                }

            }
        }
    }
}

/*
 * Scale the rows of a BSR matrix *in place*
 *
 *   A[i,:] *= X[i]
 *
 */
template <class I, class T>
void bsr_scale_rows(const I n_brow,
                    const I n_bcol,
                    const I R,
                    const I C,
                    const I Ap[],
                    const I Aj[],
                          T Ax[],
                    const T Xx[])
{
    const npy_intp RC = (npy_intp)R*C;

    for(I i = 0; i < n_brow; i++){
        const T * row_scales = Xx + (npy_intp)R*i;

        for(I jj = Ap[i]; jj < Ap[i+1]; jj++){
           T * block = Ax + RC*jj;

            for(I bi = 0; bi < R; bi++){
                scal(C, row_scales[bi], block + (npy_intp)C*bi);
            }
        }
    }
}

/*
 * Scale the columns of a BSR matrix *in place*
 *
 *   A[:,i] *= X[i]
 *
 */
template <class I, class T>
void bsr_scale_columns(const I n_brow,
                       const I n_bcol,
                       const I R,
                       const I C,
                       const I Ap[],
                       const I Aj[],
                             T Ax[],
                       const T Xx[])
{
    const I bnnz = Ap[n_brow];
    const npy_intp RC  = (npy_intp)R*C;
    for(I i = 0; i < bnnz; i++){
        const T * scales = Xx + (npy_intp)C*Aj[i] ;
        T * block = Ax + RC*i;

        for(I bi = 0; bi < R; bi++){
            for(I bj = 0; bj < C; bj++){
                block[C*bi + bj] *= scales[bj];
            }
        }

    }
}



/*
 * Sort the column block indices of a BSR matrix inplace
 *
 * Input Arguments:
 *   I  n_brow        - number of row blocks in A
 *   I  n_bcol        - number of column blocks in A
 *   I  R             - rows per block
 *   I  C             - columns per block
 *   I  Ap[n_brow+1]  - row pointer
 *   I  Aj[nblk(A)]   - column indices
 *   T  Ax[nnz(A)]    - nonzeros
 *
 */
template <class I, class T>
void bsr_sort_indices(const I n_brow,
                      const I n_bcol,
                      const I R,
                      const I C,
                            I Ap[],
                            I Aj[],
                            T Ax[])
{
    if( R == 1 && C == 1 ){
        csr_sort_indices(n_brow, Ap, Aj, Ax);
        return;
    }


    const I nblks = Ap[n_brow];
    const npy_intp RC    = (npy_intp)R*C;
    const npy_intp nnz   = (npy_intp)RC*nblks;

    //compute permutation of blocks using CSR
    std::vector<I> perm(nblks);

    for(I i = 0; i < nblks; i++)
        perm[i] = i;

    csr_sort_indices(n_brow, Ap, Aj, &perm[0]);

    std::vector<T> Ax_copy(nnz);
    std::copy(Ax, Ax + nnz, Ax_copy.begin());

    for(I i = 0; i < nblks; i++){
        const T * input = &Ax_copy[RC * perm[i]];
              T * output = Ax + RC*i;
        std::copy(input, input + RC, output);
    }
}


/*
 * Compute transpose(A) BSR matrix A
 *
 * Input Arguments:
 *   I  n_brow        - number of row blocks in A
 *   I  n_bcol        - number of column blocks in A
 *   I  R             - rows per block
 *   I  C             - columns per block
 *   I  Ap[n_brow+1]  - row pointer
 *   I  Aj[nblk(A)]   - column indices
 *   T  Ax[nnz(A)]    - nonzeros
 *
 * Output Arguments:
 *   I  Bp[n_col+1]   - row pointer
 *   I  Bj[nblk(A)]   - column indices
 *   T  Bx[nnz(A)]    - nonzeros
 *
 * Note:
 *   Output arrays Bp, Bj, Bx must be preallocated
 *
 * Note:
 *   Input:  column indices *are not* assumed to be in sorted order
 *   Output: row indices *will be* in sorted order
 *
 *   Complexity: Linear.  Specifically O(nnz(A) + max(n_row,n_col))
 *
 */
template <class I, class T>
void bsr_transpose(const I n_brow,
                   const I n_bcol,
                   const I R,
                   const I C,
                   const I Ap[],
                   const I Aj[],
                   const T Ax[],
                         I Bp[],
                         I Bj[],
                         T Bx[])
{
    const I nblks = Ap[n_brow];
    const npy_intp RC    = (npy_intp)R*C;

    //compute permutation of blocks using tranpose(CSR)
    std::vector<I> perm_in (nblks);
    std::vector<I> perm_out(nblks);

    for(I i = 0; i < nblks; i++)
        perm_in[i] = i;

    csr_tocsc(n_brow, n_bcol, Ap, Aj, &perm_in[0], Bp, Bj, &perm_out[0]);

    for(I i = 0; i < nblks; i++){
        const T * Ax_blk = Ax + RC * perm_out[i];
              T * Bx_blk = Bx + RC * i;
        for(I r = 0; r < R; r++){
            for(I c = 0; c < C; c++){
                Bx_blk[(npy_intp)c * R + r] = Ax_blk[(npy_intp)r * C + c];
            }
        }
    }
}



template <class I, class T>
void bsr_matmat_pass2(const I n_brow,  const I n_bcol,
                      const I R,       const I C,       const I N,
                      const I Ap[],    const I Aj[],    const T Ax[],
                      const I Bp[],    const I Bj[],    const T Bx[],
                            I Cp[],          I Cj[],          T Cx[])
{
    assert(R > 0 && C > 0 && N > 0);

    if( R == 1 && N == 1 && C == 1 ){
        // Use CSR for 1x1 blocksize
        csr_matmat_pass2(n_brow, n_bcol, Ap, Aj, Ax, Bp, Bj, Bx, Cp, Cj, Cx);
        return;
    }

    const npy_intp RC = (npy_intp)R*C;
    const npy_intp RN = (npy_intp)R*N;
    const npy_intp NC = (npy_intp)N*C;

    std::fill( Cx, Cx + RC * Cp[n_brow], 0 ); //clear output array

    std::vector<I>  next(n_bcol,-1);
    std::vector<T*> mats(n_bcol);

    npy_intp nnz = 0;
    Cp[0] = 0;

    for(I i = 0; i < n_brow; i++){
        I head   = -2;
        I length =  0;

        I jj_start = Ap[i];
        I jj_end   = Ap[i+1];
        for(I jj = jj_start; jj < jj_end; jj++){
            I j = Aj[jj];

            I kk_start = Bp[j];
            I kk_end   = Bp[j+1];
            for(I kk = kk_start; kk < kk_end; kk++){
                I k = Bj[kk];

                if(next[k] == -1){
                    next[k] = head;
                    head = k;
                    Cj[nnz] = k;
                    mats[k] = Cx + RC*nnz;
                    nnz++;
                    length++;
                }

                const T * A = Ax + jj*RN;
                const T * B = Bx + kk*NC;

                gemm(R, C, N, A, B, mats[k]);
            }
        }

        for(I jj = 0; jj < length; jj++){
            I temp = head;
            head = next[head];
            next[temp] = -1; //clear arrays
        }

    }
}




template <class I, class T>
bool is_nonzero_block(const T block[], const I blocksize){
    for(I i = 0; i < blocksize; i++){
        if(block[i] != 0){
            return true;
        }
    }
    return false;
}



/*
 * Compute C = A (binary_op) B for BSR matrices that are not
 * necessarily canonical BSR format.  Specifically, this method
 * works even when the input matrices have duplicate and/or
 * unsorted column indices within a given row.
 *
 * Refer to bsr_binop_bsr() for additional information
 *
 * Note:
 *   Output arrays Cp, Cj, and Cx must be preallocated
 *   If nnz(C) is not known a priori, a conservative bound is:
 *          nnz(C) <= nnz(A) + nnz(B)
 *
 * Note:
 *   Input:  A and B column indices are not assumed to be in sorted order
 *   Output: C column indices are not generally in sorted order
 *           C will not contain any duplicate entries or explicit zeros.
 *
 */
template <class I, class T, class T2, class bin_op>
void bsr_binop_bsr_general(const I n_brow, const I n_bcol,
                           const I R,      const I C,
                           const I Ap[],   const I Aj[],   const T Ax[],
                           const I Bp[],   const I Bj[],   const T Bx[],
                                 I Cp[],         I Cj[],        T2 Cx[],
                           const bin_op& op)
{
    //Method that works for duplicate and/or unsorted indices
    const npy_intp RC = (npy_intp)R*C;

    Cp[0] = 0;
    I nnz = 0;

    std::vector<I>  next(n_bcol,     -1);
    std::vector<T> A_row(n_bcol * RC, 0);   // this approach can be problematic for large R
    std::vector<T> B_row(n_bcol * RC, 0);

    for(I i = 0; i < n_brow; i++){
        I head   = -2;
        I length =  0;

        //add a row of A to A_row
        for(I jj = Ap[i]; jj < Ap[i+1]; jj++){
            I j = Aj[jj];

            for(I n = 0; n < RC; n++)
                A_row[RC*j + n] += Ax[RC*jj + n];

            if(next[j] == -1){
                next[j] = head;
                head = j;
                length++;
            }
        }

        //add a row of B to B_row
        for(I jj = Bp[i]; jj < Bp[i+1]; jj++){
            I j = Bj[jj];

            for(I n = 0; n < RC; n++)
                B_row[RC*j + n] += Bx[RC*jj + n];

            if(next[j] == -1){
                next[j] = head;
                head = j;
                length++;
            }
        }


        for(I jj = 0; jj < length; jj++){
            // compute op(block_A, block_B)
            for(I n = 0; n < RC; n++)
                Cx[RC * nnz + n] = op(A_row[RC*head + n], B_row[RC*head + n]);

            // advance counter if block is nonzero
            if( is_nonzero_block(Cx + (RC * nnz), RC) )
                Cj[nnz++] = head;

            // clear block_A and block_B values
            for(I n = 0; n < RC; n++){
                A_row[RC*head + n] = 0;
                B_row[RC*head + n] = 0;
            }

            I temp = head;
            head = next[head];
            next[temp] = -1;
        }

        Cp[i + 1] = nnz;
    }
}


/*
 * Compute C = A (binary_op) B for BSR matrices that are in the
 * canonical BSR format.  Specifically, this method requires that
 * the rows of the input matrices are free of duplicate column indices
 * and that the column indices are in sorted order.
 *
 * Refer to bsr_binop_bsr() for additional information
 *
 * Note:
 *   Input:  A and B column indices are assumed to be in sorted order
 *   Output: C column indices will be in sorted order
 *           Cx will not contain any zero entries
 *
 */
template <class I, class T, class T2, class bin_op>
void bsr_binop_bsr_canonical(const I n_brow, const I n_bcol,
                             const I R,      const I C,
                             const I Ap[],   const I Aj[],   const T Ax[],
                             const I Bp[],   const I Bj[],   const T Bx[],
                                   I Cp[],         I Cj[],        T2 Cx[],
                             const bin_op& op)
{
    const npy_intp RC = (npy_intp)R*C;
    T2 * result = Cx;

    Cp[0] = 0;
    I nnz = 0;

    for(I i = 0; i < n_brow; i++){
        I A_pos = Ap[i];
        I B_pos = Bp[i];
        I A_end = Ap[i+1];
        I B_end = Bp[i+1];

        //while not finished with either row
        while(A_pos < A_end && B_pos < B_end){
            I A_j = Aj[A_pos];
            I B_j = Bj[B_pos];

            if(A_j == B_j){
                for(I n = 0; n < RC; n++){
                    result[n] = op(Ax[RC*A_pos + n], Bx[RC*B_pos + n]);
                }

                if( is_nonzero_block(result,RC) ){
                    Cj[nnz] = A_j;
                    result += RC;
                    nnz++;
                }

                A_pos++;
                B_pos++;
            } else if (A_j < B_j) {
                for(I n = 0; n < RC; n++){
                    result[n] = op(Ax[RC*A_pos + n], 0);
                }

                if(is_nonzero_block(result,RC)){
                    Cj[nnz] = A_j;
                    result += RC;
                    nnz++;
                }

                A_pos++;
            } else {
                //B_j < A_j
                for(I n = 0; n < RC; n++){
                    result[n] = op(0, Bx[RC*B_pos + n]);
                }
                if(is_nonzero_block(result,RC)){
                    Cj[nnz] = B_j;
                    result += RC;
                    nnz++;
                }

                B_pos++;
            }
        }

        //tail
        while(A_pos < A_end){
            for(I n = 0; n < RC; n++){
                result[n] = op(Ax[RC*A_pos + n], 0);
            }

            if(is_nonzero_block(result, RC)){
                Cj[nnz] = Aj[A_pos];
                result += RC;
                nnz++;
            }

            A_pos++;
        }
        while(B_pos < B_end){
            for(I n = 0; n < RC; n++){
                result[n] = op(0,Bx[RC*B_pos + n]);
            }

            if(is_nonzero_block(result, RC)){
                Cj[nnz] = Bj[B_pos];
                result += RC;
                nnz++;
            }

            B_pos++;
        }

        Cp[i+1] = nnz;
    }
}


/*
 * Compute C = A (binary_op) B for CSR matrices A,B where the column
 * indices with the rows of A and B are known to be sorted.
 *
 *   binary_op(x,y) - binary operator to apply elementwise
 *
 * Input Arguments:
 *   I    n_row       - number of rows in A (and B)
 *   I    n_col       - number of columns in A (and B)
 *   I    Ap[n_row+1] - row pointer
 *   I    Aj[nnz(A)]  - column indices
 *   T    Ax[nnz(A)]  - nonzeros
 *   I    Bp[n_row+1] - row pointer
 *   I    Bj[nnz(B)]  - column indices
 *   T    Bx[nnz(B)]  - nonzeros
 * Output Arguments:
 *   I    Cp[n_row+1] - row pointer
 *   I    Cj[nnz(C)]  - column indices
 *   T    Cx[nnz(C)]  - nonzeros
 *
 * Note:
 *   Output arrays Cp, Cj, and Cx must be preallocated
 *   If nnz(C) is not known a priori, a conservative bound is:
 *          nnz(C) <= nnz(A) + nnz(B)
 *
 * Note:
 *   Input:  A and B column indices are not assumed to be in sorted order.
 *   Output: C column indices will be in sorted if both A and B have sorted indices.
 *           Cx will not contain any zero entries
 *
 */
template <class I, class T, class T2, class bin_op>
void bsr_binop_bsr(const I n_brow, const I n_bcol,
                   const I R,      const I C,
                   const I Ap[],   const I Aj[],   const T Ax[],
                   const I Bp[],   const I Bj[],   const T Bx[],
                         I Cp[],         I Cj[],        T2 Cx[],
                   const bin_op& op)
{
    assert( R > 0 && C > 0);

    if( R == 1 && C == 1 ){
        //use CSR for 1x1 blocksize
        csr_binop_csr(n_brow, n_bcol, Ap, Aj, Ax, Bp, Bj, Bx, Cp, Cj, Cx, op);
    }
    else if ( csr_has_canonical_format(n_brow, Ap, Aj) && csr_has_canonical_format(n_brow, Bp, Bj) ){
        // prefer faster implementation
        bsr_binop_bsr_canonical(n_brow, n_bcol, R, C, Ap, Aj, Ax, Bp, Bj, Bx, Cp, Cj, Cx, op);
    }
    else {
        // slower fallback method
        bsr_binop_bsr_general(n_brow, n_bcol, R, C, Ap, Aj, Ax, Bp, Bj, Bx, Cp, Cj, Cx, op);
    }
}

/* element-wise binary operations */
template <class I, class T, class T2>
void bsr_ne_bsr(const I n_row, const I n_col, const I R, const I C,
                const I Ap[], const I Aj[], const T Ax[],
                const I Bp[], const I Bj[], const T Bx[],
                      I Cp[],       I Cj[],      T2 Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::not_equal_to<T>());
}

template <class I, class T, class T2>
void bsr_lt_bsr(const I n_row, const I n_col, const I R, const I C,
                const I Ap[], const I Aj[], const T Ax[],
                const I Bp[], const I Bj[], const T Bx[],
                      I Cp[],       I Cj[],      T2 Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::less<T>());
}

template <class I, class T, class T2>
void bsr_gt_bsr(const I n_row, const I n_col, const I R, const I C,
                const I Ap[], const I Aj[], const T Ax[],
                const I Bp[], const I Bj[], const T Bx[],
                      I Cp[],       I Cj[],      T2 Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::greater<T>());
}

template <class I, class T, class T2>
void bsr_le_bsr(const I n_row, const I n_col, const I R, const I C,
                const I Ap[], const I Aj[], const T Ax[],
                const I Bp[], const I Bj[], const T Bx[],
                      I Cp[],       I Cj[],      T2 Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::less_equal<T>());
}

template <class I, class T, class T2>
void bsr_ge_bsr(const I n_row, const I n_col, const I R, const I C,
                const I Ap[], const I Aj[], const T Ax[],
                const I Bp[], const I Bj[], const T Bx[],
                      I Cp[],       I Cj[],      T2 Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::greater_equal<T>());
}

template <class I, class T>
void bsr_elmul_bsr(const I n_row, const I n_col, const I R, const I C,
                   const I Ap[], const I Aj[], const T Ax[],
                   const I Bp[], const I Bj[], const T Bx[],
                         I Cp[],       I Cj[],       T Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::multiplies<T>());
}

template <class I, class T>
void bsr_eldiv_bsr(const I n_row, const I n_col, const I R, const I C,
                   const I Ap[], const I Aj[], const T Ax[],
                   const I Bp[], const I Bj[], const T Bx[],
                         I Cp[],       I Cj[],       T Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::divides<T>());
}


template <class I, class T>
void bsr_plus_bsr(const I n_row, const I n_col, const I R, const I C,
                  const I Ap[], const I Aj[], const T Ax[],
                  const I Bp[], const I Bj[], const T Bx[],
                        I Cp[],       I Cj[],       T Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::plus<T>());
}

template <class I, class T>
void bsr_minus_bsr(const I n_row, const I n_col, const I R, const I C,
                   const I Ap[], const I Aj[], const T Ax[],
                   const I Bp[], const I Bj[], const T Bx[],
                         I Cp[],       I Cj[],       T Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,std::minus<T>());
}


template <class I, class T>
void bsr_maximum_bsr(const I n_row, const I n_col, const I R, const I C,
                     const I Ap[], const I Aj[], const T Ax[],
                     const I Bp[], const I Bj[], const T Bx[],
                           I Cp[],       I Cj[],       T Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,maximum<T>());
}

template <class I, class T>
void bsr_minimum_bsr(const I n_row, const I n_col, const I R, const I C,
                     const I Ap[], const I Aj[], const T Ax[],
                     const I Bp[], const I Bj[], const T Bx[],
                           I Cp[],       I Cj[],       T Cx[])
{
    bsr_binop_bsr(n_row,n_col,R,C,Ap,Aj,Ax,Bp,Bj,Bx,Cp,Cj,Cx,minimum<T>());
}





//template <class I, class T>
//void bsr_tocsr(const I n_brow,
//             const I n_bcol,
//             const I R,
//             const I C,
//             const I Ap[],
//             const I Aj[],
//             const T Ax[],
//                   I Bp[],
//                     I Bj[]
//                   T Bx[])
//{
//    const I RC = R*C;
//
//    for(I brow = 0; brow < n_brow; brow++){
//        I row_size = C * (Ap[brow + 1] - Ap[brow]);
//        for(I r = 0; r < R; r++){
//            Bp[R*brow + r] = RC * Ap[brow] + r * row_size
//        }
//    }
//}


template <class I, class T>
void bsr_matvec(const I n_brow,
                const I n_bcol,
                const I R,
                const I C,
                const I Ap[],
                const I Aj[],
                const T Ax[],
                const T Xx[],
                      T Yx[])
{
    assert(R > 0 && C > 0);

    if( R == 1 && C == 1 ){
        //use CSR for 1x1 blocksize
        csr_matvec(n_brow, n_bcol, Ap, Aj, Ax, Xx, Yx);
        return;
    }

    const npy_intp RC = (npy_intp)R*C;
    for(I i = 0; i < n_brow; i++){
        T * y = Yx + (npy_intp)R * i;
        for(I jj = Ap[i]; jj < Ap[i+1]; jj++){
            const I j = Aj[jj];
            const T * A = Ax + RC * jj;
            const T * x = Xx + (npy_intp)C * j;
            gemv(R, C, A, x, y); // y += A*x
        }
    }
}


/*
 * Compute Y += A*X for BSR matrix A and dense block vectors X,Y
 *
 *
 * Input Arguments:
 *   I  n_brow              - number of row blocks in A
 *   I  n_bcol              - number of column blocks in A
 *   I  n_vecs              - number of column vectors in X and Y
 *   I  R                   - rows per block
 *   I  C                   - columns per block
 *   I  Ap[n_brow+1]        - row pointer
 *   I  Aj[nblks(A)]        - column indices
 *   T  Ax[nnz(A)]          - nonzeros
 *   T  Xx[C*n_bcol,n_vecs] - input vector
 *
 * Output Arguments:
 *   T  Yx[R*n_brow,n_vecs] - output vector
 *
 */
template <class I, class T>
void bsr_matvecs(const I n_brow,
                 const I n_bcol,
                 const I n_vecs,
                 const I R,
                 const I C,
                 const I Ap[],
                 const I Aj[],
                 const T Ax[],
                 const T Xx[],
                       T Yx[])
{
    assert(R > 0 && C > 0);

    if( R == 1 && C == 1 ){
        //use CSR for 1x1 blocksize
        csr_matvecs(n_brow, n_bcol, n_vecs, Ap, Aj, Ax, Xx, Yx);
        return;
    }

    const npy_intp A_bs = (npy_intp)R*C;      //Ax blocksize
    const npy_intp Y_bs = (npy_intp)n_vecs*R; //Yx blocksize
    const npy_intp X_bs = (npy_intp)C*n_vecs; //Xx blocksize

    for(I i = 0; i < n_brow; i++){
        T * y = Yx + Y_bs * i;
        for(I jj = Ap[i]; jj < Ap[i+1]; jj++){
            const I j = Aj[jj];
            const T * A = Ax + A_bs * jj;
            const T * x = Xx + X_bs * j;
            gemm(R, n_vecs, C, A, x, y); // y += A*x
        }
    }
}


#endif