1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#ifndef __COO_H__
#define __COO_H__
#include <algorithm>
/*
* Compute B = A for COO matrix A, CSR matrix B
*
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in A
* I nnz - number of nonzeros in A
* I Ai[nnz(A)] - row indices
* I Aj[nnz(A)] - column indices
* T Ax[nnz(A)] - nonzeros
* Output Arguments:
* I Bp - row pointer
* I Bj - column indices
* T Bx - nonzeros
*
* Note:
* Output arrays Bp, Bj, and Bx must be preallocated
*
* Note:
* Input: row and column indices *are not* assumed to be ordered
*
* Note: duplicate entries are carried over to the CSR represention
*
* Complexity: Linear. Specifically O(nnz(A) + max(n_row,n_col))
*
*/
template <class I, class T>
void coo_tocsr(const I n_row,
const I n_col,
const I nnz,
const I Ai[],
const I Aj[],
const T Ax[],
I Bp[],
I Bj[],
T Bx[])
{
//compute number of non-zero entries per row of A
std::fill(Bp, Bp + n_row, 0);
for (I n = 0; n < nnz; n++){
Bp[Ai[n]]++;
}
//cumsum the nnz per row to get Bp[]
for(I i = 0, cumsum = 0; i < n_row; i++){
I temp = Bp[i];
Bp[i] = cumsum;
cumsum += temp;
}
Bp[n_row] = nnz;
//write Aj,Ax into Bj,Bx
for(I n = 0; n < nnz; n++){
I row = Ai[n];
I dest = Bp[row];
Bj[dest] = Aj[n];
Bx[dest] = Ax[n];
Bp[row]++;
}
for(I i = 0, last = 0; i <= n_row; i++){
I temp = Bp[i];
Bp[i] = last;
last = temp;
}
//now Bp,Bj,Bx form a CSR representation (with possible duplicates)
}
/*
* Compute B += A for COO matrix A, dense matrix B
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in A
* npy_int64 nnz - number of nonzeros in A
* I Ai[nnz(A)] - row indices
* I Aj[nnz(A)] - column indices
* T Ax[nnz(A)] - nonzeros
* T Bx[n_row*n_col] - dense matrix
*
*/
template <class I, class T>
void coo_todense(const I n_row,
const I n_col,
const npy_int64 nnz,
const I Ai[],
const I Aj[],
const T Ax[],
T Bx[],
const int fortran)
{
if (!fortran) {
for(npy_int64 n = 0; n < nnz; n++){
Bx[ (npy_intp)n_col * Ai[n] + Aj[n] ] += Ax[n];
}
}
else {
for(npy_int64 n = 0; n < nnz; n++){
Bx[ (npy_intp)n_row * Aj[n] + Ai[n] ] += Ax[n];
}
}
}
/*
* Compute Y += A*X for COO matrix A and dense vectors X,Y
*
*
* Input Arguments:
* npy_int64 nnz - number of nonzeros in A
* I Ai[nnz] - row indices
* I Aj[nnz] - column indices
* T Ax[nnz] - nonzero values
* T Xx[n_col] - input vector
*
* Output Arguments:
* T Yx[n_row] - output vector
*
* Notes:
* Output array Yx must be preallocated
*
* Complexity: Linear. Specifically O(nnz(A))
*
*/
template <class I, class T>
void coo_matvec(const npy_int64 nnz,
const I Ai[],
const I Aj[],
const T Ax[],
const T Xx[],
T Yx[])
{
for(npy_int64 n = 0; n < nnz; n++){
Yx[Ai[n]] += Ax[n] * Xx[Aj[n]];
}
}
#endif
|