1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
/*
* sparsetools.cxx
*
* Python module wrapping the sparsetools C++ routines.
*
* Each C++ routine is templated vs. an integer (I) and a data (T) parameter.
* The `generate_sparsetools.py` script generates `*_impl.h` headers
* that contain thunk functions with a datatype-based switch statement calling
* each templated instantiation.
*
* `generate_sparsetools.py` also generates a PyMethodDef list of Python
* routines and the corresponding functions call the thunk functions via
* `call_thunk`.
*
* The `call_thunk` function below determines the templated I and T data types
* based on the Python arguments. It then allocates arrays with pointers to
* the raw data, with appropriate types, and calls the thunk function after
* that.
*
* The types of arguments are specified by a "spec". This is given in a format
* where one character represents one argument. The one-character values are
* listed below in the call_spec function.
*/
#define PY_ARRAY_UNIQUE_SYMBOL _scipy_sparse_sparsetools_ARRAY_API
#include <Python.h>
#include <string>
#include <stdexcept>
#include <vector>
#include <cstdlib>
#include "numpy/ndarrayobject.h"
#include "sparsetools.h"
#define MAX_ARGS 16
#if NPY_API_VERSION >= 0x0000000c
#define HAVE_WRITEBACKIFCOPY
#endif
static const int supported_I_typenums[] = {NPY_INT32, NPY_INT64};
static const int n_supported_I_typenums = sizeof(supported_I_typenums) / sizeof(int);
static const int supported_T_typenums[] = {NPY_BOOL,
NPY_BYTE, NPY_UBYTE,
NPY_SHORT, NPY_USHORT,
NPY_INT, NPY_UINT,
NPY_LONG, NPY_ULONG,
NPY_LONGLONG, NPY_ULONGLONG,
NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE,
NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE};
static const int n_supported_T_typenums = sizeof(supported_T_typenums) / sizeof(int);
static PyObject *array_from_std_vector_and_free(int typenum, void *p);
static void *allocate_std_vector_typenum(int typenum);
static void free_std_vector_typenum(int typenum, void *p);
static PyObject *c_array_from_object(PyObject *obj, int typenum, int is_output);
/*
* Call a thunk function, dealing with input and output arrays.
*
* Resolves the templated <integer> and <data> dtypes from the `args` argument
* list.
*
* Parameters
* ----------
* ret_spec : {'i', 'v'}
* Return value spec. 'i' for integer, 'v' for void.
* spec
* String whose each character specifies a types of an
* argument:
*
* 'i': <integer> scalar
* 'I': <integer> array
* 'T': <data> array
* 'V': std::vector<integer>
* 'W': std::vector<data>
* 'B': npy_bool array
* '*': indicates that the next argument is an output argument
* thunk : PY_LONG_LONG thunk(int I_typenum, int T_typenum, void **)
* Thunk function to call. It is passed a void** array of pointers to
* arguments, constructed according to `spec`. The types of data pointed
* to by each element agree with I_typenum and T_typenum, or are bools.
* args
* Python tuple containing unprocessed arguments.
*
* Returns
* -------
* return_value
* The Python return value
*
*/
NPY_VISIBILITY_HIDDEN PyObject *
call_thunk(char ret_spec, const char *spec, thunk_t *thunk, PyObject *args)
{
void *arg_list[MAX_ARGS];
PyObject *arg_arrays[MAX_ARGS];
int is_output[MAX_ARGS];
PyObject *return_value = NULL;
int I_typenum = NPY_INT32;
int T_typenum = -1;
int VW_count = 0;
int I_in_arglist = 0;
int T_in_arglist = 0;
int next_is_output = 0;
int j, k, arg_j;
const char *p;
PY_LONG_LONG ret;
Py_ssize_t max_array_size = 0;
NPY_BEGIN_THREADS_DEF;
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_ValueError, "args is not a tuple");
return NULL;
}
for (j = 0; j < MAX_ARGS; ++j) {
arg_list[j] = NULL;
arg_arrays[j] = NULL;
is_output[j] = 0;
}
/*
* Detect data types in the signature
*/
arg_j = 0;
j = 0;
for (p = spec; *p != '\0'; ++p, ++j, ++arg_j) {
const int *supported_typenums;
int n_supported_typenums;
int cur_typenum;
PyObject *arg;
PyArray_Descr *dtype;
if (j >= MAX_ARGS) {
PyErr_SetString(PyExc_ValueError,
"internal error: too many arguments in spec");
goto fail;
}
is_output[j] = next_is_output;
next_is_output = 0;
switch (*p) {
case '*':
next_is_output = 1;
--j;
--arg_j;
continue;
case 'i':
case 'l':
/* Integer scalars */
arg = PyTuple_GetItem(args, arg_j);
if (arg == NULL) {
goto fail;
}
Py_INCREF(arg);
arg_arrays[j] = arg;
continue;
case 'I':
/* Integer arrays */
supported_typenums = supported_I_typenums;
n_supported_typenums = n_supported_I_typenums;
cur_typenum = I_typenum;
I_in_arglist = 1;
break;
case 'T':
/* Data arrays */
supported_typenums = supported_T_typenums;
n_supported_typenums = n_supported_T_typenums;
cur_typenum = T_typenum;
T_in_arglist = 1;
break;
case 'B':
/* Boolean arrays */
arg = PyTuple_GetItem(args, arg_j);
if (arg == NULL) {
goto fail;
}
arg_arrays[j] = c_array_from_object(arg, NPY_BOOL, is_output[j]);
if (arg_arrays[j] == NULL) {
goto fail;
}
continue;
case 'V':
/* std::vector integer output array */
I_in_arglist = 1;
--arg_j;
VW_count += 1;
continue;
case 'W':
/* std::vector data output array */
T_in_arglist = 1;
--arg_j;
VW_count += 1;
continue;
default:
PyErr_SetString(PyExc_ValueError, "unknown character in spec");
goto fail;
}
arg = PyTuple_GetItem(args, arg_j);
if (arg == NULL) {
goto fail;
}
arg_arrays[j] = c_array_from_object(arg, -1, is_output[j]);
if (arg_arrays[j] == NULL) {
goto fail;
}
/* Find a compatible supported data type */
dtype = PyArray_DESCR(arg_arrays[j]);
for (k = 0; k < n_supported_typenums; ++k) {
if (PyArray_CanCastSafely(dtype->type_num, supported_typenums[k]) &&
(cur_typenum == -1 || PyArray_CanCastSafely(cur_typenum, supported_typenums[k])))
{
cur_typenum = supported_typenums[k];
break;
}
}
if (k == n_supported_typenums) {
PyErr_SetString(PyExc_ValueError,
"unsupported data types in input");
goto fail;
}
if (*p == 'I') {
I_typenum = cur_typenum;
}
else {
T_typenum = cur_typenum;
}
}
if (arg_j != PyTuple_Size(args)) {
PyErr_SetString(PyExc_ValueError, "too many arguments");
goto fail;
}
if ((I_in_arglist && I_typenum == -1) ||
(T_in_arglist && T_typenum == -1)) {
PyErr_SetString(PyExc_ValueError,
"unsupported data types in input");
goto fail;
}
/*
* Cast and extract argument arrays
*/
j = 0;
for (p = spec; *p != '\0'; ++p, ++j) {
PyObject *arg;
int cur_typenum;
if (*p == '*') {
--j;
continue;
}
else if (*p == 'i' || *p == 'l') {
/* Integer scalars */
PY_LONG_LONG value;
#if PY_VERSION_HEX >= 0x03000000
value = PyLong_AsLongLong(arg_arrays[j]);
#else
if (PyInt_Check(arg_arrays[j])) {
value = PyInt_AsLong(arg_arrays[j]);
}
else {
value = PyLong_AsLongLong(arg_arrays[j]);
}
#endif
if (PyErr_Occurred()) {
goto fail;
}
if ((*p == 'l' || PyArray_EquivTypenums(I_typenum, NPY_INT64))
&& value == (npy_int64)value) {
arg_list[j] = std::malloc(sizeof(npy_int64));
*(npy_int64*)arg_list[j] = (npy_int64)value;
}
else if (*p == 'i' && PyArray_EquivTypenums(I_typenum, NPY_INT32)
&& value == (npy_int32)value) {
arg_list[j] = std::malloc(sizeof(npy_int32));
*(npy_int32*)arg_list[j] = (npy_int32)value;
}
else {
PyErr_SetString(PyExc_ValueError,
"could not convert integer scalar");
goto fail;
}
continue;
}
else if (*p == 'B') {
/* Boolean arrays already cast */
}
else if (*p == 'V') {
arg_list[j] = allocate_std_vector_typenum(I_typenum);
if (arg_list[j] == NULL) {
goto fail;
}
continue;
}
else if (*p == 'W') {
arg_list[j] = allocate_std_vector_typenum(T_typenum);
if (arg_list[j] == NULL) {
goto fail;
}
continue;
}
else {
cur_typenum = (*p == 'I' || *p == 'i') ? I_typenum : T_typenum;
/* Cast if necessary */
arg = arg_arrays[j];
if (PyArray_EquivTypenums(PyArray_DESCR(arg)->type_num, cur_typenum)) {
/* No cast needed. */
}
else if (!is_output[j] || PyArray_CanCastSafely(cur_typenum, PyArray_DESCR(arg)->type_num)) {
/* Cast needed. Output arrays require safe cast back. */
arg_arrays[j] = c_array_from_object(arg, cur_typenum, is_output[j]);
Py_DECREF(arg);
if (arg_arrays[j] == NULL) {
goto fail;
}
}
else {
/* Cast back into output array was not safe. */
PyErr_SetString(PyExc_ValueError,
"Output dtype not compatible with inputs.");
goto fail;
}
}
/* Grab value */
arg_list[j] = PyArray_DATA(arg_arrays[j]);
/* Find maximum array size */
if (PyArray_SIZE(arg_arrays[j]) > max_array_size) {
max_array_size = PyArray_SIZE(arg_arrays[j]);
}
}
/*
* Call thunk
*/
if (max_array_size > 100) {
/* Threshold GIL release: it's not a free operation */
NPY_BEGIN_THREADS;
}
try {
ret = thunk(I_typenum, T_typenum, arg_list);
NPY_END_THREADS;
} catch (const std::bad_alloc &e) {
NPY_END_THREADS;
PyErr_SetString(PyExc_MemoryError, e.what());
goto fail;
} catch (const std::exception &e) {
NPY_END_THREADS;
PyErr_SetString(PyExc_RuntimeError, e.what());
goto fail;
}
/*
* Generate return value;
*/
switch (ret_spec) {
case 'i':
case 'l':
return_value = PyLong_FromLongLong(ret);
break;
case 'v':
Py_INCREF(Py_None);
return_value = Py_None;
break;
default:
PyErr_SetString(PyExc_ValueError,
"internal error: invalid return value spec");
}
/*
* Convert any std::vector output arrays to arrays
*/
if (VW_count > 0) {
PyObject *new_ret;
PyObject *old_ret = return_value;
int pos;
return_value = NULL;
new_ret = PyTuple_New(VW_count + (old_ret == Py_None ? 0 : 1));
if (new_ret == NULL) {
goto fail;
}
if (old_ret != Py_None) {
PyTuple_SET_ITEM(new_ret, 0, old_ret);
pos = 1;
}
else {
Py_DECREF(old_ret);
pos = 0;
}
j = 0;
for (p = spec; *p != '\0'; ++p, ++j) {
if (*p == '*') {
--j;
continue;
}
else if (*p == 'V' || *p == 'W') {
PyObject *arg;
if (*p == 'V') {
arg = array_from_std_vector_and_free(I_typenum, arg_list[j]);
} else {
arg = array_from_std_vector_and_free(T_typenum, arg_list[j]);
}
arg_list[j] = NULL;
if (arg == NULL) {
Py_XDECREF(new_ret);
goto fail;
}
PyTuple_SET_ITEM(new_ret, pos, arg);
++pos;
}
}
return_value = new_ret;
}
fail:
/*
* Cleanup
*/
for (j = 0, p = spec; *p != '\0'; ++p, ++j) {
if (*p == '*') {
--j;
continue;
}
#ifdef HAVE_WRITEBACKIFCOPY
if (is_output[j] && arg_arrays[j] != NULL && PyArray_Check(arg_arrays[j])) {
PyArray_ResolveWritebackIfCopy((PyArrayObject *)arg_arrays[j]);
}
#endif
Py_XDECREF(arg_arrays[j]);
if ((*p == 'i' || *p == 'l') && arg_list[j] != NULL) {
std::free(arg_list[j]);
}
else if (*p == 'V' && arg_list[j] != NULL) {
free_std_vector_typenum(I_typenum, arg_list[j]);
}
else if (*p == 'W' && arg_list[j] != NULL) {
free_std_vector_typenum(T_typenum, arg_list[j]);
}
}
return return_value;
}
/*
* Helper functions for dealing with std::vector templated instantiation.
*/
static void *allocate_std_vector_typenum(int typenum)
{
#define PROCESS(ntype, ctype) \
if (PyArray_EquivTypenums(typenum, ntype)) { \
return (void*)(new std::vector<ctype>()); \
}
try {
PROCESS(NPY_BOOL, npy_bool_wrapper);
PROCESS(NPY_BYTE, npy_byte);
PROCESS(NPY_UBYTE, npy_ubyte);
PROCESS(NPY_SHORT, npy_short);
PROCESS(NPY_USHORT, npy_ushort);
PROCESS(NPY_INT, npy_int);
PROCESS(NPY_UINT, npy_uint);
PROCESS(NPY_LONG, npy_long);
PROCESS(NPY_ULONG, npy_ulong);
PROCESS(NPY_LONGLONG, npy_longlong);
PROCESS(NPY_ULONGLONG, npy_ulonglong);
PROCESS(NPY_FLOAT, npy_float);
PROCESS(NPY_DOUBLE, npy_double);
PROCESS(NPY_LONGDOUBLE, npy_longdouble);
PROCESS(NPY_CFLOAT, npy_cfloat_wrapper);
PROCESS(NPY_CDOUBLE, npy_cdouble_wrapper);
PROCESS(NPY_CLONGDOUBLE, npy_clongdouble_wrapper);
} catch (std::exception &e) {
/* failed */
}
#undef PROCESS
PyErr_SetString(PyExc_RuntimeError,
"failed to allocate std::vector");
return NULL;
}
static void free_std_vector_typenum(int typenum, void *p)
{
#define PROCESS(ntype, ctype) \
if (PyArray_EquivTypenums(typenum, ntype)) { \
delete ((std::vector<ctype>*)p); \
}
PROCESS(NPY_BOOL, npy_bool_wrapper);
PROCESS(NPY_BYTE, npy_byte);
PROCESS(NPY_UBYTE, npy_ubyte);
PROCESS(NPY_SHORT, npy_short);
PROCESS(NPY_USHORT, npy_ushort);
PROCESS(NPY_INT, npy_int);
PROCESS(NPY_UINT, npy_uint);
PROCESS(NPY_LONG, npy_long);
PROCESS(NPY_ULONG, npy_ulong);
PROCESS(NPY_LONGLONG, npy_longlong);
PROCESS(NPY_ULONGLONG, npy_ulonglong);
PROCESS(NPY_FLOAT, npy_float);
PROCESS(NPY_DOUBLE, npy_double);
PROCESS(NPY_LONGDOUBLE, npy_longdouble);
PROCESS(NPY_CFLOAT, npy_cfloat_wrapper);
PROCESS(NPY_CDOUBLE, npy_cdouble_wrapper);
PROCESS(NPY_CLONGDOUBLE, npy_clongdouble_wrapper);
#undef PROCESS
}
static PyObject *array_from_std_vector_and_free(int typenum, void *p)
{
#define PROCESS(ntype, ctype) \
if (PyArray_EquivTypenums(typenum, ntype)) { \
std::vector<ctype> *v = (std::vector<ctype>*)p; \
npy_intp length = v->size(); \
PyObject *obj = PyArray_SimpleNew(1, &length, typenum); \
if (length > 0) { \
memcpy(PyArray_DATA(obj), &((*v)[0]), \
sizeof(ctype)*length); \
} \
delete v; \
return obj; \
}
PROCESS(NPY_BOOL, npy_bool_wrapper);
PROCESS(NPY_BYTE, npy_byte);
PROCESS(NPY_UBYTE, npy_ubyte);
PROCESS(NPY_SHORT, npy_short);
PROCESS(NPY_USHORT, npy_ushort);
PROCESS(NPY_INT, npy_int);
PROCESS(NPY_UINT, npy_uint);
PROCESS(NPY_LONG, npy_long);
PROCESS(NPY_ULONG, npy_ulong);
PROCESS(NPY_LONGLONG, npy_longlong);
PROCESS(NPY_ULONGLONG, npy_ulonglong);
PROCESS(NPY_FLOAT, npy_float);
PROCESS(NPY_DOUBLE, npy_double);
PROCESS(NPY_LONGDOUBLE, npy_longdouble);
PROCESS(NPY_CFLOAT, npy_cfloat_wrapper);
PROCESS(NPY_CDOUBLE, npy_cdouble_wrapper);
PROCESS(NPY_CLONGDOUBLE, npy_clongdouble_wrapper);
#undef PROCESS
PyErr_SetString(PyExc_RuntimeError,
"failed to convert std::vector output array");
return NULL;
}
static PyObject *c_array_from_object(PyObject *obj, int typenum, int is_output)
{
if (!is_output) {
if (typenum == -1) {
return PyArray_FROM_OF(obj, NPY_C_CONTIGUOUS|NPY_NOTSWAPPED);
}
else {
return PyArray_FROM_OTF(obj, typenum, NPY_C_CONTIGUOUS|NPY_NOTSWAPPED);
}
}
else {
#ifdef HAVE_WRITEBACKIFCOPY
int flags = NPY_C_CONTIGUOUS|NPY_WRITEABLE|NPY_ARRAY_WRITEBACKIFCOPY|NPY_NOTSWAPPED;
#else
int flags = NPY_C_CONTIGUOUS|NPY_WRITEABLE|NPY_UPDATEIFCOPY|NPY_NOTSWAPPED;
#endif
if (typenum == -1) {
return PyArray_FROM_OF(obj, flags);
}
else {
return PyArray_FROM_OTF(obj, typenum, flags);
}
}
}
/*
* Python module initialization
*/
extern "C" {
#include "sparsetools_impl.h"
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"_sparsetools",
NULL,
-1,
sparsetools_methods,
NULL,
NULL,
NULL,
NULL
};
PyObject *PyInit__sparsetools(void)
{
PyObject *m;
m = PyModule_Create(&moduledef);
import_array();
return m;
}
#else
PyMODINIT_FUNC init_sparsetools(void) {
PyObject *m;
m = Py_InitModule("_sparsetools", sparsetools_methods);
import_array();
if (m == NULL) {
Py_FatalError("can't initialize module _sparsetools");
}
}
#endif
} /* extern "C" */
|