File: sputils.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (502 lines) | stat: -rw-r--r-- 16,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
""" Utility functions for sparse matrix module
"""

from __future__ import division, print_function, absolute_import

import operator
import warnings
import numpy as np

__all__ = ['upcast', 'getdtype', 'isscalarlike', 'isintlike',
           'isshape', 'issequence', 'isdense', 'ismatrix', 'get_sum_dtype']

supported_dtypes = ['bool', 'int8', 'uint8', 'short', 'ushort', 'intc',
                    'uintc', 'longlong', 'ulonglong', 'single', 'double',
                    'longdouble', 'csingle', 'cdouble', 'clongdouble']
supported_dtypes = [np.typeDict[x] for x in supported_dtypes]

_upcast_memo = {}


def upcast(*args):
    """Returns the nearest supported sparse dtype for the
    combination of one or more types.

    upcast(t0, t1, ..., tn) -> T  where T is a supported dtype

    Examples
    --------

    >>> upcast('int32')
    <type 'numpy.int32'>
    >>> upcast('bool')
    <type 'numpy.bool_'>
    >>> upcast('int32','float32')
    <type 'numpy.float64'>
    >>> upcast('bool',complex,float)
    <type 'numpy.complex128'>

    """

    t = _upcast_memo.get(hash(args))
    if t is not None:
        return t

    upcast = np.find_common_type(args, [])

    for t in supported_dtypes:
        if np.can_cast(upcast, t):
            _upcast_memo[hash(args)] = t
            return t

    raise TypeError('no supported conversion for types: %r' % (args,))


def upcast_char(*args):
    """Same as `upcast` but taking dtype.char as input (faster)."""
    t = _upcast_memo.get(args)
    if t is not None:
        return t
    t = upcast(*map(np.dtype, args))
    _upcast_memo[args] = t
    return t


def upcast_scalar(dtype, scalar):
    """Determine data type for binary operation between an array of
    type `dtype` and a scalar.
    """
    return (np.array([0], dtype=dtype) * scalar).dtype


def downcast_intp_index(arr):
    """
    Down-cast index array to np.intp dtype if it is of a larger dtype.

    Raise an error if the array contains a value that is too large for
    intp.
    """
    if arr.dtype.itemsize > np.dtype(np.intp).itemsize:
        if arr.size == 0:
            return arr.astype(np.intp)
        maxval = arr.max()
        minval = arr.min()
        if maxval > np.iinfo(np.intp).max or minval < np.iinfo(np.intp).min:
            raise ValueError("Cannot deal with arrays with indices larger "
                             "than the machine maximum address size "
                             "(e.g. 64-bit indices on 32-bit machine).")
        return arr.astype(np.intp)
    return arr


def to_native(A):
    return np.asarray(A, dtype=A.dtype.newbyteorder('native'))


def getdtype(dtype, a=None, default=None):
    """Function used to simplify argument processing.  If 'dtype' is not
    specified (is None), returns a.dtype; otherwise returns a np.dtype
    object created from the specified dtype argument.  If 'dtype' and 'a'
    are both None, construct a data type out of the 'default' parameter.
    Furthermore, 'dtype' must be in 'allowed' set.
    """
    # TODO is this really what we want?
    if dtype is None:
        try:
            newdtype = a.dtype
        except AttributeError:
            if default is not None:
                newdtype = np.dtype(default)
            else:
                raise TypeError("could not interpret data type")
    else:
        newdtype = np.dtype(dtype)
        if newdtype == np.object_:
            warnings.warn("object dtype is not supported by sparse matrices")

    return newdtype


def get_index_dtype(arrays=(), maxval=None, check_contents=False):
    """
    Based on input (integer) arrays `a`, determine a suitable index data
    type that can hold the data in the arrays.

    Parameters
    ----------
    arrays : tuple of array_like
        Input arrays whose types/contents to check
    maxval : float, optional
        Maximum value needed
    check_contents : bool, optional
        Whether to check the values in the arrays and not just their types.
        Default: False (check only the types)

    Returns
    -------
    dtype : dtype
        Suitable index data type (int32 or int64)

    """

    int32min = np.iinfo(np.int32).min
    int32max = np.iinfo(np.int32).max

    dtype = np.intc
    if maxval is not None:
        if maxval > int32max:
            dtype = np.int64

    if isinstance(arrays, np.ndarray):
        arrays = (arrays,)

    for arr in arrays:
        arr = np.asarray(arr)
        if not np.can_cast(arr.dtype, np.int32):
            if check_contents:
                if arr.size == 0:
                    # a bigger type not needed
                    continue
                elif np.issubdtype(arr.dtype, np.integer):
                    maxval = arr.max()
                    minval = arr.min()
                    if minval >= int32min and maxval <= int32max:
                        # a bigger type not needed
                        continue

            dtype = np.int64
            break

    return dtype


def get_sum_dtype(dtype):
    """Mimic numpy's casting for np.sum"""
    if np.issubdtype(dtype, np.float_):
        return np.float_
    if dtype.kind == 'u' and np.can_cast(dtype, np.uint):
        return np.uint
    if np.can_cast(dtype, np.int_):
        return np.int_
    return dtype


def isscalarlike(x):
    """Is x either a scalar, an array scalar, or a 0-dim array?"""
    return np.isscalar(x) or (isdense(x) and x.ndim == 0)


def isintlike(x):
    """Is x appropriate as an index into a sparse matrix? Returns True
    if it can be cast safely to a machine int.
    """
    # Fast-path check to eliminate non-scalar values. operator.index would
    # catch this case too, but the exception catching is slow.
    if np.ndim(x) != 0:
        return False
    try:
        operator.index(x)
    except (TypeError, ValueError):
        try:
            loose_int = bool(int(x) == x)
        except (TypeError, ValueError):
            return False
        if loose_int:
            warnings.warn("Inexact indices into sparse matrices are deprecated",
                          DeprecationWarning)
        return loose_int
    return True


def isshape(x, nonneg=False):
    """Is x a valid 2-tuple of dimensions?

    If nonneg, also checks that the dimensions are non-negative.
    """
    try:
        # Assume it's a tuple of matrix dimensions (M, N)
        (M, N) = x
    except:
        return False
    else:
        if isintlike(M) and isintlike(N):
            if np.ndim(M) == 0 and np.ndim(N) == 0:
                if not nonneg or (M >= 0 and N >= 0):
                    return True
        return False


def issequence(t):
    return ((isinstance(t, (list, tuple)) and
            (len(t) == 0 or np.isscalar(t[0]))) or
            (isinstance(t, np.ndarray) and (t.ndim == 1)))


def ismatrix(t):
    return ((isinstance(t, (list, tuple)) and
             len(t) > 0 and issequence(t[0])) or
            (isinstance(t, np.ndarray) and t.ndim == 2))


def isdense(x):
    return isinstance(x, np.ndarray)


def validateaxis(axis):
    if axis is not None:
        axis_type = type(axis)

        # In NumPy, you can pass in tuples for 'axis', but they are
        # not very useful for sparse matrices given their limited
        # dimensions, so let's make it explicit that they are not
        # allowed to be passed in
        if axis_type == tuple:
            raise TypeError(("Tuples are not accepted for the 'axis' "
                             "parameter. Please pass in one of the "
                             "following: {-2, -1, 0, 1, None}."))

        # If not a tuple, check that the provided axis is actually
        # an integer and raise a TypeError similar to NumPy's
        if not np.issubdtype(np.dtype(axis_type), np.integer):
            raise TypeError("axis must be an integer, not {name}"
                            .format(name=axis_type.__name__))

        if not (-2 <= axis <= 1):
            raise ValueError("axis out of range")


def check_shape(args, current_shape=None):
    """Imitate numpy.matrix handling of shape arguments"""
    if len(args) == 0:
        raise TypeError("function missing 1 required positional argument: "
                        "'shape'")
    elif len(args) == 1:
        try:
            shape_iter = iter(args[0])
        except TypeError:
            new_shape = (operator.index(args[0]), )
        else:
            new_shape = tuple(operator.index(arg) for arg in shape_iter)
    else:
        new_shape = tuple(operator.index(arg) for arg in args)

    if current_shape is None:
        if len(new_shape) != 2:
            raise ValueError('shape must be a 2-tuple of positive integers')
        elif new_shape[0] < 0 or new_shape[1] < 0:
            raise ValueError("'shape' elements cannot be negative")

    else:
        # Check the current size only if needed
        current_size = np.prod(current_shape, dtype=int)

        # Check for negatives
        negative_indexes = [i for i, x in enumerate(new_shape) if x < 0]
        if len(negative_indexes) == 0:
            new_size = np.prod(new_shape, dtype=int)
            if new_size != current_size:
                raise ValueError('cannot reshape array of size {} into shape {}'
                                 .format(new_size, new_shape))
        elif len(negative_indexes) == 1:
            skip = negative_indexes[0]
            specified = np.prod(new_shape[0:skip] + new_shape[skip+1:])
            unspecified, remainder = divmod(current_size, specified)
            if remainder != 0:
                err_shape = tuple('newshape' if x < 0 else x for x in new_shape)
                raise ValueError('cannot reshape array of size {} into shape {}'
                                 ''.format(current_size, err_shape))
            new_shape = new_shape[0:skip] + (unspecified,) + new_shape[skip+1:]
        else:
            raise ValueError('can only specify one unknown dimension')

        # Add and remove ones like numpy.matrix.reshape
        if len(new_shape) != 2:
            new_shape = tuple(arg for arg in new_shape if arg != 1)

            if len(new_shape) == 0:
                new_shape = (1, 1)
            elif len(new_shape) == 1:
                new_shape = (1, new_shape[0])

    if len(new_shape) > 2:
        raise ValueError('shape too large to be a matrix')

    return new_shape


def check_reshape_kwargs(kwargs):
    """Unpack keyword arguments for reshape function.

    This is useful because keyword arguments after star arguments are not
    allowed in Python 2, but star keyword arguments are. This function unpacks
    'order' and 'copy' from the star keyword arguments (with defaults) and
    throws an error for any remaining.
    """

    order = kwargs.pop('order', 'C')
    copy = kwargs.pop('copy', False)
    if kwargs:  # Some unused kwargs remain
        raise TypeError('reshape() got unexpected keywords arguments: {}'
                        .format(', '.join(kwargs.keys())))
    return order, copy


###############################################################################
# Wrappers for NumPy types that are deprecated

def matrix(*args, **kwargs):
    with warnings.catch_warnings(record=True):
        warnings.filterwarnings(
            'ignore', '.*the matrix subclass is not the recommended way.*')
        return np.matrix(*args, **kwargs)


def asmatrix(*args, **kwargs):
    with warnings.catch_warnings(record=True):
        warnings.filterwarnings(
            'ignore', '.*the matrix subclass is not the recommended way.*')
        return np.asmatrix(*args, **kwargs)


def bmat(*args, **kwargs):
    with warnings.catch_warnings(record=True):
        warnings.filterwarnings(
            'ignore', '.*the matrix subclass is not the recommended way.*')
        return np.bmat(*args, **kwargs)


class IndexMixin(object):
    """
    This class simply exists to hold the methods necessary for fancy indexing.
    """
    def _slicetoarange(self, j, shape):
        """ Given a slice object, use numpy arange to change it to a 1D
        array.
        """
        start, stop, step = j.indices(shape)
        return np.arange(start, stop, step)

    def _unpack_index(self, index):
        """ Parse index. Always return a tuple of the form (row, col).
        Where row/col is a integer, slice, or array of integers.
        """
        # First, check if indexing with single boolean matrix.
        from .base import spmatrix  # This feels dirty but...
        if (isinstance(index, (spmatrix, np.ndarray)) and
           (index.ndim == 2) and index.dtype.kind == 'b'):
                return index.nonzero()

        # Parse any ellipses.
        index = self._check_ellipsis(index)

        # Next, parse the tuple or object
        if isinstance(index, tuple):
            if len(index) == 2:
                row, col = index
            elif len(index) == 1:
                row, col = index[0], slice(None)
            else:
                raise IndexError('invalid number of indices')
        else:
            row, col = index, slice(None)

        # Next, check for validity, or transform the index as needed.
        row, col = self._check_boolean(row, col)
        return row, col

    def _check_ellipsis(self, index):
        """Process indices with Ellipsis. Returns modified index."""
        if index is Ellipsis:
            return (slice(None), slice(None))
        elif isinstance(index, tuple):
            # Find first ellipsis
            for j, v in enumerate(index):
                if v is Ellipsis:
                    first_ellipsis = j
                    break
            else:
                first_ellipsis = None

            # Expand the first one
            if first_ellipsis is not None:
                # Shortcuts
                if len(index) == 1:
                    return (slice(None), slice(None))
                elif len(index) == 2:
                    if first_ellipsis == 0:
                        if index[1] is Ellipsis:
                            return (slice(None), slice(None))
                        else:
                            return (slice(None), index[1])
                    else:
                        return (index[0], slice(None))

                # General case
                tail = ()
                for v in index[first_ellipsis+1:]:
                    if v is not Ellipsis:
                        tail = tail + (v,)
                nd = first_ellipsis + len(tail)
                nslice = max(0, 2 - nd)
                return index[:first_ellipsis] + (slice(None),)*nslice + tail

        return index

    def _check_boolean(self, row, col):
        from .base import isspmatrix  # ew...
        # Supporting sparse boolean indexing with both row and col does
        # not work because spmatrix.ndim is always 2.
        if isspmatrix(row) or isspmatrix(col):
            raise IndexError(
                "Indexing with sparse matrices is not supported "
                "except boolean indexing where matrix and index "
                "are equal shapes.")
        if isinstance(row, np.ndarray) and row.dtype.kind == 'b':
            row = self._boolean_index_to_array(row)
        if isinstance(col, np.ndarray) and col.dtype.kind == 'b':
            col = self._boolean_index_to_array(col)
        return row, col

    def _boolean_index_to_array(self, i):
        if i.ndim > 1:
            raise IndexError('invalid index shape')
        return i.nonzero()[0]

    def _index_to_arrays(self, i, j):
        i, j = self._check_boolean(i, j)

        i_slice = isinstance(i, slice)
        if i_slice:
            i = self._slicetoarange(i, self.shape[0])[:, None]
        else:
            i = np.atleast_1d(i)

        if isinstance(j, slice):
            j = self._slicetoarange(j, self.shape[1])[None, :]
            if i.ndim == 1:
                i = i[:, None]
            elif not i_slice:
                raise IndexError('index returns 3-dim structure')
        elif isscalarlike(j):
            # row vector special case
            j = np.atleast_1d(j)
            if i.ndim == 1:
                i, j = np.broadcast_arrays(i, j)
                i = i[:, None]
                j = j[:, None]
                return i, j
        else:
            j = np.atleast_1d(j)
            if i_slice and j.ndim > 1:
                raise IndexError('index returns 3-dim structure')

        i, j = np.broadcast_arrays(i, j)

        if i.ndim == 1:
            # return column vectors for 1-D indexing
            i = i[None, :]
            j = j[None, :]
        elif i.ndim > 2:
            raise IndexError("Index dimension must be <= 2")

        return i, j