File: ckdtree.pyx

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (1529 lines) | stat: -rw-r--r-- 57,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
# Copyright Anne M. Archibald 2008
# Additional contributions by Patrick Varilly and Sturla Molden 2012
# Revision by Sturla Molden 2015
# Balanced kd-tree construction written by Jake Vanderplas for scikit-learn
# Released under the scipy license

# distutils: language = c++

from __future__ import absolute_import

import numpy as np
import scipy.sparse

cimport numpy as np
from numpy.math cimport INFINITY
    
from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free
from libc.string cimport memset, memcpy

cimport cython

from multiprocessing import cpu_count
import threading

cdef extern from "limits.h":
    long LONG_MAX

cdef extern from "ckdtree_methods.h":
    int number_of_processors
    
number_of_processors = cpu_count()

from libcpp.vector cimport vector
from libc cimport string

__all__ = ['cKDTree']

    
# Borrowed references
# ===================

cdef extern from *:
    
    struct ckdtree:
        pass
        
    int NPY_LIKELY(int)
    int NPY_UNLIKELY(int)

       
cdef extern from "ckdtree_decl.h":
    struct ckdtreenode:
        np.intp_t split_dim
        np.intp_t children
        np.float64_t split
        np.intp_t start_idx
        np.intp_t end_idx
        ckdtreenode *less
        ckdtreenode *greater
        np.intp_t _less
        np.intp_t _greater
    
    
# C++ helper functions
# ====================

cdef extern from "coo_entries.h":

    struct coo_entry:
        np.intp_t i
        np.intp_t j
        np.float64_t v

cdef extern from "ordered_pair.h":

    struct ordered_pair:
        np.intp_t i
        np.intp_t j

def new_object(obj):
    return obj.__new__(obj)
 
cdef extern from "cpp_utils.h": 
    object pickle_tree_buffer(vector[ckdtreenode] *buf)    
    object unpickle_tree_buffer(vector[ckdtreenode] *buf, object src)
    ckdtreenode *tree_buffer_root(vector[ckdtreenode] *buf)
    ordered_pair *ordered_pair_vector_buf(vector[ordered_pair] *buf)
    coo_entry *coo_entry_vector_buf(vector[coo_entry] *buf)
    void *tree_buffer_pointer(vector[ckdtreenode] *buf)
    np.intp_t *npy_intp_vector_buf(vector[np.intp_t] *buf)
    np.float64_t *npy_float64_vector_buf(vector[np.float64_t] *buf)
    ctypedef void *intvector_ptr_t 



# coo_entry wrapper
# =================

cdef class coo_entries:

    cdef: 
        readonly object __array_interface__
        vector[coo_entry] *buf
        
    def __cinit__(coo_entries self):    
        self.buf = NULL

    def __init__(coo_entries self):    
        self.buf = new vector[coo_entry]()
        
    def __dealloc__(coo_entries self):
        if self.buf != NULL:
            del self.buf
            
    # The methods ndarray, dict, coo_matrix, and dok_matrix must only
    # be called after the buffer is filled with coo_entry data. This
    # is because std::vector can reallocate its internal buffer when
    # push_back is called.
            
    def ndarray(coo_entries self):    
        cdef: 
            coo_entry *pr
            np.uintp_t uintptr
            np.intp_t n
        _dtype = [('i',np.intp),('j',np.intp),('v',np.float64)]
        res_dtype = np.dtype(_dtype, align = True)
        n = <np.intp_t> self.buf.size()
        if NPY_LIKELY(n > 0):
            pr = coo_entry_vector_buf(self.buf) 
            uintptr = <np.uintp_t> (<void*> pr)
            dtype = np.dtype(np.uint8)               
            self.__array_interface__ = dict(
                data = (uintptr, False),
                descr = dtype.descr,
                shape = (n*sizeof(coo_entry),),
                strides = (dtype.itemsize,),
                typestr = dtype.str,
                version = 3,
            ) 
            return np.asarray(self).view(dtype=res_dtype)
        else:
            return np.empty(shape=(0,), dtype=res_dtype)
        
    def dict(coo_entries self):
        cdef:
            np.intp_t i, j, k, n
            np.float64_t v
            coo_entry *pr
            dict res_dict
        n = <np.intp_t> self.buf.size()
        if NPY_LIKELY(n > 0):
            pr = coo_entry_vector_buf(self.buf)        
            res_dict = dict()           
            for k in range(n):                    
                i = pr[k].i
                j = pr[k].j
                v = pr[k].v                    
                res_dict[(i,j)] = v
            return res_dict
        else:
            return {}
    
    def coo_matrix(coo_entries self, m, n):
        res_arr = self.ndarray()
        return scipy.sparse.coo_matrix(
                       (res_arr['v'], (res_arr['i'], res_arr['j'])),
                                       shape=(m, n))
        
    def dok_matrix(coo_entries self, m, n):
        return self.coo_matrix(m,n).todok()
        
        
# ordered_pair wrapper
# ====================

cdef class ordered_pairs:

    cdef: 
        readonly object __array_interface__
        vector[ordered_pair] *buf
        
    def __cinit__(ordered_pairs self):
        self.buf = NULL

    def __init__(ordered_pairs self):
        self.buf = new vector[ordered_pair]()
        
    def __dealloc__(ordered_pairs self):
        if self.buf != NULL:
            del self.buf
            
    # The methods ndarray and set must only be called after the buffer 
    # is filled with ordered_pair data.
    
    def ndarray(ordered_pairs self):
        cdef: 
            ordered_pair *pr
            np.uintp_t uintptr 
            np.intp_t n            
        n = <np.intp_t> self.buf.size()
        if NPY_LIKELY(n > 0):
            pr = ordered_pair_vector_buf(self.buf) 
            uintptr = <np.uintp_t> (<void*> pr)       
            dtype = np.dtype(np.intp)               
            self.__array_interface__ = dict(
                data = (uintptr, False),
                descr = dtype.descr,
                shape = (n,2),
                strides = (2*dtype.itemsize,dtype.itemsize),
                typestr = dtype.str,
                version = 3,
            )
            return np.asarray(self)
        else:
            return np.empty(shape=(0,2), dtype=np.intp)
        
    def set(ordered_pairs self):        
        cdef: 
            ordered_pair *pair
            np.intp_t i, n
            set results
        results = set()
        pair = ordered_pair_vector_buf(self.buf)
        n = <np.intp_t> self.buf.size()
        if sizeof(long) < sizeof(np.intp_t):
            # Needed for Python 2.x on Win64
            for i in range(n):
                results.add((int(pair.i), int(pair.j)))
                pair += 1 
        else:
            # other platforms
            for i in range(n):
                results.add((pair.i, pair.j))
                pair += 1
        return results
    
        
            
# Tree structure exposed to Python
# ================================

cdef class cKDTreeNode:
    """
    class cKDTreeNode

    This class exposes a Python view of a node in the cKDTree object.
    
    All attributes are read-only.
    
    Attributes
    ----------
    level : int
        The depth of the node. 0 is the level of the root node.
    split_dim : int
        The dimension along which this node is split. If this value is -1  
        the node is a leafnode in the kd-tree. Leafnodes are not split further
        and scanned by brute force.
    split : float
        The value used to separate split this node. Points with value >= split
        in the split_dim dimension are sorted to the 'greater' subnode 
        whereas those with value < split are sorted to the 'lesser' subnode.
    children : int
        The number of data points sorted to this node.
    data_points : ndarray of float64
        An array with the data points sorted to this node.
    indices : ndarray of intp
        An array with the indices of the data points sorted to this node. The
        indices refer to the position in the data set used to construct the
        kd-tree.
    lesser : cKDTreeNode or None
        Subnode with the 'lesser' data points. This attribute is None for
        leafnodes.
    greater : cKDTreeNode or None
        Subnode with the 'greater' data points. This attribute is None for
        leafnodes.

    """
    cdef:
        readonly np.intp_t    level
        readonly np.intp_t    split_dim
        readonly np.intp_t    children
        readonly np.float64_t split
        ckdtreenode           *_node
        np.ndarray            _data
        np.ndarray            _indices
        
    cdef void _setup(cKDTreeNode self):
        self.split_dim = self._node.split_dim
        self.children = self._node.children
        self.split = self._node.split
        
    property data_points:   
        def __get__(cKDTreeNode self):
            return self._data[self.indices,:]
                     
    property indices:
        def __get__(cKDTreeNode self):
            cdef np.intp_t i, start, stop
            if self.split_dim == -1:
                start = self._node.start_idx
                stop = self._node.end_idx
                return self._indices[start:stop]
            else:
                return np.hstack([self.lesser.indices, 
                           self.greater.indices])
                           
    property lesser:
        def __get__(cKDTreeNode self):
            if self.split_dim == -1:
                return None
            else:
                n = cKDTreeNode()
                n._node = self._node.less
                n._data = self._data
                n._indices = self._indices
                n.level = self.level + 1
                n._setup()
                return n
                
    property greater:
        def __get__(cKDTreeNode self):
            if self.split_dim == -1:
                return None
            else:
                n = cKDTreeNode()
                n._node = self._node.greater
                n._data = self._data
                n._indices = self._indices
                n.level = self.level + 1
                n._setup()
                return n

    
# Main cKDTree class
# ==================

cdef extern from "ckdtree_methods.h":

    # External build and query methods in C++. These will internally
    # release the GIL to avoid locking up the interpreter.
    
    int ckdtree_isinf(np.float64_t x)
    
    object build_ckdtree(ckdtree *self, 
                         np.intp_t start_idx, 
                         np.intp_t end_idx,
                         np.float64_t *maxes, 
                         np.float64_t *mins, 
                         int _median, 
                         int _compact)

    object build_weights(ckdtree *self, 
                         np.float64_t *node_weights,
                         np.float64_t *weights)
       
    object query_knn(const ckdtree *self, 
                     np.float64_t *dd, 
                     np.intp_t    *ii, 
                     const np.float64_t *xx,
                     const np.intp_t    n,
                     const np.intp_t    *k, 
                     const np.intp_t    nk, 
                     const np.intp_t    kmax, 
                     const np.float64_t eps, 
                     const np.float64_t p, 
                     const np.float64_t distance_upper_bound) 
                     
    object query_pairs(const ckdtree *self, 
                       const np.float64_t r, 
                       const np.float64_t p, 
                       const np.float64_t eps,
                       vector[ordered_pair] *results)

    object count_neighbors_unweighted(const ckdtree *self,
                           const ckdtree *other,
                           np.intp_t     n_queries,
                           np.float64_t  *real_r,
                           np.intp_t     *results,
                           const np.float64_t p,
                           int cumulative)

    object count_neighbors_weighted(const ckdtree *self,
                           const ckdtree *other,
                           np.float64_t  *self_weights,
                           np.float64_t  *other_weights,
                           np.float64_t  *self_node_weights,
                           np.float64_t  *other_node_weights,
                           np.intp_t     n_queries,
                           np.float64_t  *real_r,
                           np.float64_t     *results,
                           const np.float64_t p,
                           int cumulative)

    object query_ball_point(const ckdtree *self,
                            const np.float64_t *x,
                            const np.float64_t r,
                            const np.float64_t p,
                            const np.float64_t eps,
                            const np.intp_t n_queries,
                            vector[np.intp_t] **results)

    object query_ball_tree(const ckdtree *self,
                           const ckdtree *other,
                           const np.float64_t r,
                           const np.float64_t p,
                           const np.float64_t eps,
                           vector[np.intp_t] **results)                     
     
    object sparse_distance_matrix(const ckdtree *self,
                                  const ckdtree *other,
                                  const np.float64_t p,
                                  const np.float64_t max_distance,
                                  vector[coo_entry] *results)                    
                      
                      
cdef public class cKDTree [object ckdtree, type ckdtree_type]:
    """
    cKDTree(data, leafsize=16, compact_nodes=True, copy_data=False,
            balanced_tree=True)

    kd-tree for quick nearest-neighbor lookup

    This class provides an index into a set of k-dimensional points
    which can be used to rapidly look up the nearest neighbors of any
    point. 

    The algorithm used is described in Maneewongvatana and Mount 1999. 
    The general idea is that the kd-tree is a binary trie, each of whose
    nodes represents an axis-aligned hyperrectangle. Each node specifies
    an axis and splits the set of points based on whether their coordinate
    along that axis is greater than or less than a particular value. 

    During construction, the axis and splitting point are chosen by the 
    "sliding midpoint" rule, which ensures that the cells do not all
    become long and thin. 

    The tree can be queried for the r closest neighbors of any given point 
    (optionally returning only those within some maximum distance of the 
    point). It can also be queried, with a substantial gain in efficiency, 
    for the r approximate closest neighbors.

    For large dimensions (20 is already large) do not expect this to run 
    significantly faster than brute force. High-dimensional nearest-neighbor
    queries are a substantial open problem in computer science.

    Parameters
    ----------
    data : array_like, shape (n,m)
        The n data points of dimension m to be indexed. This array is 
        not copied unless this is necessary to produce a contiguous 
        array of doubles, and so modifying this data will result in 
        bogus results. The data are also copied if the kd-tree is built
        with copy_data=True.
    leafsize : positive int, optional
        The number of points at which the algorithm switches over to
        brute-force. Default: 16.
    compact_nodes : bool, optional    
        If True, the kd-tree is built to shrink the hyperrectangles to
        the actual data range. This usually gives a more compact tree that 
        is robust against degenerated input data and gives faster queries 
        at the expense of longer build time. Default: True.
    copy_data : bool, optional
        If True the data is always copied to protect the kd-tree against 
        data corruption. Default: False.
    balanced_tree : bool, optional    
        If True, the median is used to split the hyperrectangles instead of 
        the midpoint. This usually gives a more compact tree and 
        faster queries at the expense of longer build time. Default: True.
    boxsize : array_like or scalar, optional
        Apply a m-d toroidal topology to the KDTree.. The topology is generated 
        by :math:`x_i + n_i L_i` where :math:`n_i` are integers and :math:`L_i`
        is the boxsize along i-th dimension. The input data shall be wrapped 
        into :math:`[0, L_i)`. A ValueError is raised if any of the data is
        outside of this bound.

    Attributes
    ----------
    data : ndarray, shape (n,m)
        The n data points of dimension m to be indexed. This array is
        not copied unless this is necessary to produce a contiguous
        array of doubles. The data are also copied if the kd-tree is built
        with `copy_data=True`.
    leafsize : positive int
        The number of points at which the algorithm switches over to
        brute-force.
    m : int
        The dimension of a single data-point.
    n : int
        The number of data points.
    maxes : ndarray, shape (m,)
        The maximum value in each dimension of the n data points.
    mins : ndarray, shape (m,)
        The minimum value in each dimension of the n data points.
    tree : object, class cKDTreeNode
        This class exposes a Python view of the root node in the cKDTree object.
    size : int
        The number of nodes in the tree.

    See Also
    --------
    KDTree : Implementation of `cKDTree` in pure Python

    """
    cdef:
        vector[ckdtreenode]      *tree_buffer
        ckdtreenode              *ctree 
        readonly cKDTreeNode     tree 
        readonly np.ndarray      data
        np.float64_t             *raw_data
        readonly np.intp_t       n, m
        readonly np.intp_t       leafsize
        readonly np.ndarray      maxes
        np.float64_t             *raw_maxes
        readonly np.ndarray      mins
        np.float64_t             *raw_mins
        readonly np.ndarray      indices
        np.intp_t                *raw_indices
        np.ndarray               _median_workspace
        readonly object          boxsize
        np.ndarray               boxsize_data
        np.float64_t             *raw_boxsize_data
        readonly np.intp_t       size

    def __cinit__(cKDTree self):
        self.tree_buffer = NULL        
            
    def __init__(cKDTree self, data, np.intp_t leafsize=16, compact_nodes=True, 
            copy_data=False, balanced_tree=True, boxsize=None):
        cdef np.ndarray[np.float64_t, ndim=2] data_arr
        cdef np.float64_t *tmp
        cdef int _median, _compact
        cdef np.ndarray[np.float64_t, ndim=1] boxsize_arr
        data_arr = np.ascontiguousarray(data, dtype=np.float64)
        if copy_data and (data_arr is data):
            data_arr = data_arr.copy()
        self.data = data_arr
        self.n = data_arr.shape[0]
        self.m = data_arr.shape[1]
        self.leafsize = leafsize
        if self.leafsize<1:
            raise ValueError("leafsize must be at least 1")

        if boxsize is None:
            self.boxsize = None
            self.boxsize_data = None
        else:
            boxsize_arr = np.empty(2 * self.m, dtype=np.float64)
            boxsize_arr[:self.m] = boxsize
            boxsize_arr[self.m:] = 0.5 * boxsize_arr[:self.m]
            # FIXME: how to use a matching del if new is used?
            self.boxsize_data = boxsize_arr
            self.boxsize = boxsize_arr[:self.m].copy()
            periodic_mask = self.boxsize > 0
            if ((self.data >= self.boxsize[None, :])[:, periodic_mask]).any():
                raise ValueError("Some input data are greater than the size of the periodic box.")
            if ((self.data < 0)[:, periodic_mask]).any():
                raise ValueError("Negative input data are outside of the periodic box.")

        self.maxes = np.ascontiguousarray(np.amax(self.data,axis=0), dtype=np.float64)
        self.mins = np.ascontiguousarray(np.amin(self.data,axis=0), dtype=np.float64)
        self.indices = np.ascontiguousarray(np.arange(self.n,dtype=np.intp))

        self._pre_init()

        _compact = 1 if compact_nodes else 0
        _median = 1 if balanced_tree else 0
        if _median:
            self._median_workspace = np.zeros(self.n)

        self.tree_buffer = new vector[ckdtreenode]()
        
        try:
            tmp = <np.float64_t*> PyMem_Malloc(self.m*2*sizeof(np.float64_t))
            if tmp == NULL: raise MemoryError()            
            memcpy(tmp, self.raw_maxes, self.m*sizeof(np.float64_t))
            memcpy(tmp + self.m, self.raw_mins, self.m*sizeof(np.float64_t))
            build_ckdtree(<ckdtree*> self, 0, self.n, tmp, tmp + self.m, 
                _median, _compact)
        finally:
            PyMem_Free(tmp)

        self._median_workspace = None
        
        # set up the tree structure pointers
        self._post_init()
        
        # make the tree viewable from Python
        self.tree = cKDTreeNode()
        self.tree._node = self.ctree
        self.tree._data = self.data
        self.tree._indices = self.indices
        self.tree.level = 0
        self.tree._setup()

    cdef int _pre_init(cKDTree self) except -1:

        # finalize the pointers from array attributes

        self.raw_data = <np.float64_t*> np.PyArray_DATA(self.data)
        self.raw_maxes = <np.float64_t*> np.PyArray_DATA(self.maxes)
        self.raw_mins = <np.float64_t*> np.PyArray_DATA(self.mins)
        self.raw_indices = <np.intp_t*> np.PyArray_DATA(self.indices)

        if self.boxsize_data is not None:
            self.raw_boxsize_data = <np.float64_t*>np.PyArray_DATA(self.boxsize_data)

        return 0        

    cdef int _post_init(cKDTree self) except -1:
        # finalize the tree points, this calls _post_init_traverse
        
        self.ctree = tree_buffer_root(self.tree_buffer)

        # set the size attribute after tree_buffer is built
        self.size = self.tree_buffer.size()

        return self._post_init_traverse(self.ctree)
         
    cdef int _post_init_traverse(cKDTree self, ckdtreenode *node) except -1:
        # recurse the tree and re-initialize
        # "less" and "greater" fields
        if node.split_dim == -1:
            # leafnode
            node.less = NULL
            node.greater = NULL
        else:
            node.less = self.ctree + node._less
            node.greater = self.ctree + node._greater
            self._post_init_traverse(node.less)
            self._post_init_traverse(node.greater)
                
        return 0
        

    def __dealloc__(cKDTree self):
        if self.tree_buffer != NULL:
            del self.tree_buffer

    # -----
    # query
    # -----
    
    @cython.boundscheck(False)
    def query(cKDTree self, object x, object k=1, np.float64_t eps=0,
              np.float64_t p=2, np.float64_t distance_upper_bound=INFINITY,
              np.intp_t n_jobs=1):
        """
        query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf, n_jobs=1)

        Query the kd-tree for nearest neighbors

        Parameters
        ----------
        x : array_like, last dimension self.m
            An array of points to query.
        k : list of integer or integer
            The list of k-th nearest neighbors to return. If k is an 
            integer it is treated as a list of [1, ... k] (range(1, k+1)).
            Note that the counting starts from 1.
        eps : non-negative float
            Return approximate nearest neighbors; the k-th returned value 
            is guaranteed to be no further than (1+eps) times the 
            distance to the real k-th nearest neighbor.
        p : float, 1<=p<=infinity
            Which Minkowski p-norm to use. 
            1 is the sum-of-absolute-values "Manhattan" distance
            2 is the usual Euclidean distance
            infinity is the maximum-coordinate-difference distance
        distance_upper_bound : nonnegative float
            Return only neighbors within this distance.  This is used to prune
            tree searches, so if you are doing a series of nearest-neighbor
            queries, it may help to supply the distance to the nearest neighbor
            of the most recent point.
        n_jobs : int, optional
            Number of jobs to schedule for parallel processing. If -1 is given
            all processors are used. Default: 1.
                        
        Returns
        -------
        d : array of floats
            The distances to the nearest neighbors. 
            If ``x`` has shape ``tuple+(self.m,)``, then ``d`` has shape ``tuple+(k,)``.
            When k == 1, the last dimension of the output is squeezed.
            Missing neighbors are indicated with infinite distances.
        i : ndarray of ints
            The locations of the neighbors in ``self.data``.
            If ``x`` has shape ``tuple+(self.m,)``, then ``i`` has shape ``tuple+(k,)``.
            When k == 1, the last dimension of the output is squeezed.
            Missing neighbors are indicated with ``self.n``.

        Notes
        -----
        If the KD-Tree is periodic, the position ``x`` is wrapped into the
        box.
        
        When the input k is a list, a query for arange(max(k)) is performed, but
        only columns that store the requested values of k are preserved. This is 
        implemented in a manner that reduces memory usage.

        Examples
        --------

        >>> import numpy as np
        >>> from scipy.spatial import cKDTree
        >>> x, y = np.mgrid[0:5, 2:8]
        >>> tree = cKDTree(np.c_[x.ravel(), y.ravel()])

        To query the nearest neighbours and return squeezed result, use

        >>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=1)
        >>> print(dd, ii)
        [2.         0.14142136] [ 0 13]

        To query the nearest neighbours and return unsqueezed result, use

        >>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=[1])
        >>> print(dd, ii)
        [[2.        ]
         [0.14142136]] [[ 0]
         [13]]

        To query the second nearest neighbours and return unsqueezed result, use

        >>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=[2])
        >>> print(dd, ii)
        [[2.23606798]
         [0.90553851]] [[ 6]
         [12]]

        To query the first and second nearest neighbours, use

        >>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=2)
        >>> print(dd, ii)
        [[2.         2.23606798]
         [0.14142136 0.90553851]] [[ 0  6]
         [13 12]]

        or, be more specific

        >>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=[1, 2])
        >>> print(dd, ii)
        [[2.         2.23606798]
         [0.14142136 0.90553851]] [[ 0  6]
         [13 12]]

        """
        
        cdef:
            np.intp_t n, i, j
            int overflown
        
        x_arr = np.asarray(x, dtype=np.float64)
        if x_arr.ndim == 0 or x_arr.shape[x_arr.ndim - 1] != self.m:
            raise ValueError("x must consist of vectors of length %d but "
                             "has shape %s" % (int(self.m), np.shape(x)))
        if p < 1:
            raise ValueError("Only p-norms with 1<=p<=infinity permitted")
        if x_arr.ndim == 1:
            single = True
            x_arr = x_arr[np.newaxis,:]
        else:
            single = False

        nearest = False
        if np.isscalar(k):
            if k == 1:
                nearest = True
            k = np.arange(1, k + 1)
    
        retshape = np.shape(x)[:-1]
        n = <np.intp_t> np.prod(retshape)
        xx = np.ascontiguousarray(x_arr).reshape(n, self.m)

        # The C++ function touches all dd and ii entries,
        # setting the missing values.

        dd = np.empty((n,len(k)),dtype=np.float64)
        ii = np.empty((n,len(k)),dtype=np.intp)

        # Do the query in an external C++ function. 
        # The GIL will be released in the external query function.
        def _thread_func(self, np.intp_t start, np.intp_t stop):
            cdef: 
                np.ndarray[np.intp_t,ndim=2] _ii = ii
                np.ndarray[np.float64_t,ndim=2] _dd = dd
                np.ndarray[np.float64_t,ndim=2] _xx = xx
                np.ndarray[np.intp_t,ndim=1] _k = np.array(k, dtype=np.intp)
            
            kmax = np.max(k)

            query_knn(<ckdtree*>self, &_dd[start,0], &_ii[start,0], 
                &_xx[start,0], stop-start, &_k[0], len(k), kmax, eps, p, distance_upper_bound)
        
        if (n_jobs == -1): 
            n_jobs = number_of_processors
        
        if n_jobs > 1:
            # static scheduling without load balancing is good enough
                             
            ranges = [(j * n // n_jobs, (j + 1) * n // n_jobs)
                            for j in range(n_jobs)]
            
            # There might be n_jobs+1 threads spawned here, but only n_jobs of 
            # them will do significant work.
            threads = [threading.Thread(target=_thread_func,
                                args=(self, start, stop)) for start, stop in ranges]

            # Set the daemon flag so the process can be aborted, 
            # start all threads and wait for completion.
            for t in threads:
                t.daemon = True
                t.start()
            for t in threads: 
                t.join()
        else:
            _thread_func(self, 0, n)
                
        # massage the output in conformabity to the documented behavior

        if sizeof(long) < sizeof(np.intp_t):
            # ... e.g. Windows 64
            overflown = False
            for i in range(n):
                for j in range(len(k)):
                    if ii[i,j] > <np.intp_t>LONG_MAX:
                        # C long overlow, return array of dtype=np.int_p
                        overflown = True
                        break
                if overflown: 
                    break

            if overflown:
                ddret = np.reshape(dd,retshape+(len(k),))
                iiret = np.reshape(ii,retshape+(len(k),))
            else:
                ddret = np.reshape(dd,retshape+(len(k),))
                iiret = np.reshape(ii,retshape+(len(k),)).astype(int) 
                        
        else:
            # ... most other platforms
            ddret = np.reshape(dd,retshape+(len(k),))
            iiret = np.reshape(ii,retshape+(len(k),))

        if nearest:
            ddret = ddret[..., 0]
            iiret = iiret[..., 0]
            # the only case where we return a python scalar
            if single:
                ddret = float(ddret)
                iiret = int(iiret)
            
        return ddret, iiret

    # ----------------
    # query_ball_point
    # ----------------

    def query_ball_point(cKDTree self, object x, np.float64_t r,
                         np.float64_t p=2., np.float64_t eps=0, n_jobs=1):
        """
        query_ball_point(self, x, r, p=2., eps=0)
        
        Find all points within distance r of point(s) x.

        Parameters
        ----------
        x : array_like, shape tuple + (self.m,)
            The point or points to search for neighbors of.
        r : positive float
            The radius of points to return.
        p : float, optional
            Which Minkowski p-norm to use.  Should be in the range [1, inf].
        eps : nonnegative float, optional
            Approximate search. Branches of the tree are not explored if their
            nearest points are further than ``r / (1 + eps)``, and branches are
            added in bulk if their furthest points are nearer than
            ``r * (1 + eps)``.
        n_jobs : int, optional
            Number of jobs to schedule for parallel processing. If -1 is given
            all processors are used. Default: 1.

        Returns
        -------
        results : list or array of lists
            If `x` is a single point, returns a list of the indices of the
            neighbors of `x`. If `x` is an array of points, returns an object
            array of shape tuple containing lists of neighbors.

        Notes
        -----
        If you have many points whose neighbors you want to find, you may save
        substantial amounts of time by putting them in a cKDTree and using
        query_ball_tree.

        Examples
        --------
        >>> from scipy import spatial
        >>> x, y = np.mgrid[0:4, 0:4]
        >>> points = np.c_[x.ravel(), y.ravel()]
        >>> tree = spatial.cKDTree(points)
        >>> tree.query_ball_point([2, 0], 1)
        [4, 8, 9, 12]

        """
        
        cdef:
            np.ndarray[np.float64_t, ndim=1, mode="c"] xx
            np.ndarray[np.float64_t, ndim=2, mode="c"] vxx
            vector[np.intp_t] *vres
            vector[np.intp_t] **vvres
            np.uintp_t vvres_uintp
            np.intp_t *cur
            list tmp
            np.intp_t i, j, n, m
        
        vres = NULL
        vvres = NULL
        
        try:
               
            x = np.asarray(x, dtype=np.float64)
            if x.shape[-1] != self.m:
                raise ValueError("Searching for a %d-dimensional point in a "
                                 "%d-dimensional KDTree" % 
                                     (int(x.shape[-1]), int(self.m)))
            if len(x.shape) == 1:
                vres = new vector[np.intp_t]()
                xx = np.ascontiguousarray(x, dtype=np.float64)
                query_ball_point(<ckdtree*> self, &xx[0], r, p, eps, 1, &vres)
                n = <np.intp_t> vres.size()
                tmp = n * [None]
                if NPY_LIKELY(n > 0):
                    cur = npy_intp_vector_buf(vres)
                    for i in range(n):
                        tmp[i] = cur[0]
                        cur += 1
                result = tmp
            
            else:
                retshape = x.shape[:-1]
                
                # allocate an array of std::vector<npy_intp>
                n = np.prod(retshape)
                vvres = (<vector[np.intp_t] **> 
                    PyMem_Malloc(n * sizeof(intvector_ptr_t)))
                if vvres == NULL:
                    raise MemoryError()
                
                memset(<void*> vvres, 0, n * sizeof(intvector_ptr_t))      
            
                for i in range(n):
                    vvres[i] = new vector[np.intp_t]()
                
                result = np.empty(retshape, dtype=object)
                
                vxx = np.zeros((n,self.m), dtype=np.float64)
                i = 0
                for c in np.ndindex(retshape):
                    vxx[i,:] = x[c]
                    i += 1
                    
                # multithreading logic is similar to cKDTree.query
                                        
                if (n_jobs == -1): 
                    n_jobs = number_of_processors
        
                if n_jobs > 1:
                
                    CHUNK = n//n_jobs if n//n_jobs else n
                             
                    def _thread_func(self, _j, _vxx, r, p, eps, _vvres, CHUNK): 
                        cdef: 
                            np.intp_t j = _j
                            np.ndarray[np.float64_t,ndim=2] vxx = _vxx
                            vector[np.intp_t] **vvres                   
                            np.intp_t start = j*CHUNK
                            np.intp_t stop = start + CHUNK
                        stop = n if stop > n else stop
                        vvres = (<vector[np.intp_t] **> 
                                  (<void*> (<np.uintp_t> _vvres)))                                    
                        if start < n:
                            query_ball_point(<ckdtree*>self, &vxx[start,0], 
                                r, p, eps, stop-start, vvres+start)
                                
                    vvres_uintp = <np.uintp_t> (<void*> vvres)
                    threads = [threading.Thread(target=_thread_func,
                               args=(self, j, vxx, r, p, eps,vvres_uintp,CHUNK))
                                  for j in range(1+(n//CHUNK))]
                    for t in threads:
                        t.daemon = True
                        t.start()
                    for t in threads: 
                        t.join()
                                                                
                else:
                
                    query_ball_point(<ckdtree*>self, &vxx[0,0], r, p, eps, 
                        n, vvres)
                
                i = 0
                for c in np.ndindex(retshape):
                    m = <np.intp_t> (vvres[i].size())
                    if NPY_LIKELY(m > 0):
                        tmp = m * [None]
                        cur = npy_intp_vector_buf(vvres[i])
                        for j in range(m):
                            tmp[j] = cur[0]
                            cur += 1
                        result[c] = sorted(tmp)
                    else:
                        result[c] = []
                    i += 1
        
        finally:
            if vres != NULL: 
                del vres
                
            if vvres != NULL:
                for i in range(n):
                    if vvres[i] != NULL:
                        del vvres[i]     
                PyMem_Free(vvres)
                
        return result   
            

    # ---------------
    # query_ball_tree
    # ---------------
    
    def query_ball_tree(cKDTree self, cKDTree other,
                        np.float64_t r, np.float64_t p=2., np.float64_t eps=0):
        """
        query_ball_tree(self, other, r, p=2., eps=0)

        Find all pairs of points whose distance is at most r

        Parameters
        ----------
        other : cKDTree instance
            The tree containing points to search against.
        r : float
            The maximum distance, has to be positive.
        p : float, optional
            Which Minkowski norm to use.  `p` has to meet the condition
            ``1 <= p <= infinity``.
        eps : float, optional
            Approximate search.  Branches of the tree are not explored
            if their nearest points are further than ``r/(1+eps)``, and
            branches are added in bulk if their furthest points are nearer
            than ``r * (1+eps)``.  `eps` has to be non-negative.

        Returns
        -------
        results : list of lists
            For each element ``self.data[i]`` of this tree, ``results[i]`` is a
            list of the indices of its neighbors in ``other.data``.

        """
        
        cdef: 
            vector[np.intp_t] **vvres
            np.intp_t i, j, n, m
            np.intp_t *cur
            list results
            list tmp

        # Make sure trees are compatible
        if self.m != other.m:
            raise ValueError("Trees passed to query_ball_tree have different "
                             "dimensionality")
     
        n = self.n
        
        try:
        
            # allocate an array of std::vector<npy_intp>
            vvres = (<vector[np.intp_t] **> 
                PyMem_Malloc(n * sizeof(intvector_ptr_t)))
            if vvres == NULL:
                raise MemoryError()
                
            memset(<void*> vvres, 0, n * sizeof(intvector_ptr_t))      
            
            for i in range(n):
                vvres[i] = new vector[np.intp_t]()
        
            # query in C++
            # the GIL will be released in the C++ code
            query_ball_tree(
                <ckdtree*> self, <ckdtree*> other, r, p, eps, vvres)
                          
            # store the results in a list of lists                                        
            results = n * [None]
            for i in range(n):
                m = <np.intp_t> (vvres[i].size())
                if NPY_LIKELY(m > 0):
                    tmp = m * [None]
                    cur = npy_intp_vector_buf(vvres[i]) 
                    for j in range(m):
                        tmp[j] = cur[0]
                        cur += 1
                    results[i] = sorted(tmp)
                else:
                    results[i] = []    
                                  
        finally:
            if vvres != NULL:
                for i in range(n):
                    if vvres[i] != NULL:
                        del vvres[i]     
                PyMem_Free(vvres)

        return results

    # -----------
    # query_pairs
    # -----------
    
    def query_pairs(cKDTree self, np.float64_t r, np.float64_t p=2.,
                    np.float64_t eps=0, output_type='set'):
        """
        query_pairs(self, r, p=2., eps=0)

        Find all pairs of points whose distance is at most r.

        Parameters
        ----------
        r : positive float
            The maximum distance.
        p : float, optional
            Which Minkowski norm to use.  ``p`` has to meet the condition
            ``1 <= p <= infinity``.
        eps : float, optional
            Approximate search.  Branches of the tree are not explored
            if their nearest points are further than ``r/(1+eps)``, and
            branches are added in bulk if their furthest points are nearer
            than ``r * (1+eps)``.  `eps` has to be non-negative.
        output_type : string, optional
            Choose the output container, 'set' or 'ndarray'. Default: 'set'

        Returns
        -------
        results : set or ndarray
            Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
            positions are close. If output_type is 'ndarray', an ndarry is 
            returned instead of a set.

        """
                 
        cdef ordered_pairs results

        results = ordered_pairs()
        query_pairs(<ckdtree*> self, r, p, eps, results.buf)
        
        if output_type == 'set':
            return results.set()
        elif output_type == 'ndarray':
            return results.ndarray()
        else:
            raise ValueError("Invalid output type") 

    def _build_weights(cKDTree self, object weights):
        """
        _build_weights(weights)

        Compute weights of nodes from weights of data points. This will sum
        up the total weight per node. This function is used internally.

        Parameters
        ----------
        weights : array_like
            weights of data points; must be the same length as the data points.
            currently only scalar weights are supported. Therefore the weights
            array must be 1 dimensional.

        Returns
        -------
        node_weights : array_like
            total weight for each KD-Tree node.

        """
        cdef np.intp_t num_of_nodes
        cdef np.ndarray[np.float64_t, ndim=1, mode="c"] node_weights
        cdef np.ndarray[np.float64_t, ndim=1, mode="c"] proper_weights

        num_of_nodes = self.tree_buffer.size();
        node_weights = np.empty(num_of_nodes, dtype=np.float64)

        # FIXME: use templates to avoid the type conversion 
        proper_weights = np.ascontiguousarray(weights, dtype=np.float64)

        if len(proper_weights) != self.n:
            raise ValueError('Number of weights differ from the number of data points')

        build_weights(<ckdtree*> self, <np.float64_t*>np.PyArray_DATA(node_weights),
                            <np.float64_t*> np.PyArray_DATA(proper_weights))

        return node_weights

    # ---------------
    # count_neighbors
    # ---------------

    @cython.boundscheck(False)
    def count_neighbors(cKDTree self, cKDTree other, object r, np.float64_t p=2., 
                        object weights=None, int cumulative=True):
        """
        count_neighbors(self, other, r, p=2., weights=None, cumulative=True)

        Count how many nearby pairs can be formed. (pair-counting)

        Count the number of pairs (x1,x2) can be formed, with x1 drawn
        from self and x2 drawn from ``other``, and where
        ``distance(x1, x2, p) <= r``.

        Data points on self and other are optionally weighted by the ``weights``
        argument. (See below)

        The algorithm we implement here is based on [1]_. See notes for further discussion.

        Parameters
        ----------
        other : cKDTree instance
            The other tree to draw points from, can be the same tree as self.
        r : float or one-dimensional array of floats
            The radius to produce a count for. Multiple radii are searched with
            a single tree traversal. 
            If the count is non-cumulative(``cumulative=False``), ``r`` defines 
            the edges of the bins, and must be non-decreasing.
        p : float, optional 
            1<=p<=infinity. 
            Which Minkowski p-norm to use.
            Default 2.0.
        weights : tuple, array_like, or None, optional
            If None, the pair-counting is unweighted.
            If given as a tuple, weights[0] is the weights of points in ``self``, and
            weights[1] is the weights of points in ``other``; either can be None to 
            indicate the points are unweighted.
            If given as an array_like, weights is the weights of points in ``self``
            and ``other``. For this to make sense, ``self`` and ``other`` must be the
            same tree. If ``self`` and ``other`` are two different trees, a ``ValueError``
            is raised.
            Default: None
        cumulative : bool, optional
            Whether the returned counts are cumulative. When cumulative is set to ``False``
            the algorithm is optimized to work with a large number of bins (>10) specified
            by ``r``. When ``cumulative`` is set to True, the algorithm is optimized to work
            with a small number of ``r``. Default: True

        Returns
        -------
        result : scalar or 1-D array
            The number of pairs. For unweighted counts, the result is integer.
            For weighted counts, the result is float.
            If cumulative is False, ``result[i]`` contains the counts with
            ``(-inf if i == 0 else r[i-1]) < R <= r[i]``

        Notes
        -----
        Pair-counting is the basic operation used to calculate the two point
        correlation functions from a data set composed of position of objects.

        Two point correlation function measures the clustering of objects and
        is widely used in cosmology to quantify the large scale structure
        in our Universe, but it may be useful for data analysis in other fields
        where self-similar assembly of objects also occur.

        The Landy-Szalay estimator for the two point correlation function of
        ``D`` measures the clustering signal in ``D``. [2]_

        For example, given the position of two sets of objects,

        - objects ``D`` (data) contains the clustering signal, and

        - objects ``R`` (random) that contains no signal,

        .. math::

             \\xi(r) = \\frac{<D, D> - 2 f <D, R> + f^2<R, R>}{f^2<R, R>},

        where the brackets represents counting pairs between two data sets
        in a finite bin around ``r`` (distance), corresponding to setting
        `cumulative=False`, and ``f = float(len(D)) / float(len(R))`` is the
        ratio between number of objects from data and random.

        The algorithm implemented here is loosely based on the dual-tree
        algorithm described in [1]_. We switch between two different
        pair-cumulation scheme depending on the setting of ``cumulative``.
        The computing time of the method we use when for
        ``cumulative == False`` does not scale with the total number of bins.
        The algorithm for ``cumulative == True`` scales linearly with the
        number of bins, though it is slightly faster when only
        1 or 2 bins are used. [5]_.

        As an extension to the naive pair-counting,
        weighted pair-counting counts the product of weights instead
        of number of pairs.
        Weighted pair-counting is used to estimate marked correlation functions
        ([3]_, section 2.2),
        or to properly calculate the average of data per distance bin
        (e.g. [4]_, section 2.1 on redshift).

        .. [1] Gray and Moore,
               "N-body problems in statistical learning",
               Mining the sky, 2000,
               https://arxiv.org/abs/astro-ph/0012333

        .. [2] Landy and Szalay,
               "Bias and variance of angular correlation functions",
               The Astrophysical Journal, 1993,
               http://adsabs.harvard.edu/abs/1993ApJ...412...64L

        .. [3] Sheth, Connolly and Skibba,
               "Marked correlations in galaxy formation models",
               Arxiv e-print, 2005,
               https://arxiv.org/abs/astro-ph/0511773

        .. [4] Hawkins, et al.,
               "The 2dF Galaxy Redshift Survey: correlation functions,
               peculiar velocities and the matter density of the Universe",
               Monthly Notices of the Royal Astronomical Society, 2002,
               http://adsabs.harvard.edu/abs/2003MNRAS.346...78H

        .. [5] https://github.com/scipy/scipy/pull/5647#issuecomment-168474926

        """
        cdef: 
            int r_ndim
            np.intp_t n_queries, i
            np.ndarray[np.float64_t, ndim=1, mode="c"] real_r
            np.ndarray[np.float64_t, ndim=1, mode="c"] fresults
            np.ndarray[np.intp_t, ndim=1, mode="c"] iresults
            np.ndarray[np.float64_t, ndim=1, mode="c"] w1, w1n
            np.ndarray[np.float64_t, ndim=1, mode="c"] w2, w2n
            np.float64_t *w1p
            np.float64_t *w1np
            np.float64_t *w2p
            np.float64_t *w2np

        # Make sure trees are compatible
        if self.m != other.m:
            raise ValueError("Trees passed to count_neighbors have different "
                             "dimensionality")

        # Make a copy of r array to ensure it's contiguous and to modify it
        # below
        r_ndim = len(np.shape(r))
        if r_ndim > 1:
            raise ValueError("r must be either a single value or a "
                             "one-dimensional array of values")
        real_r = np.array(r, ndmin=1, dtype=np.float64, copy=True)
        if not cumulative:
            if (real_r[:-1] > real_r[1:]).any():
                raise ValueError("r must be non-decreasing for non-cumulative counting.");
        real_r, uind, inverse = np.unique(real_r, return_inverse=True, return_index=True)
        n_queries = real_r.shape[0]

        # Internally, we represent all distances as distance ** p
        if not ckdtree_isinf(p):
            for i in range(n_queries):
                if not ckdtree_isinf(real_r[i]):
                    real_r[i] = real_r[i] ** p

        if weights is None:
            self_weights = other_weights = None
        elif isinstance(weights, tuple):
            self_weights, other_weights = weights
        else:
            self_weights = other_weights = weights
            if other is not self:
                raise ValueError("Two different trees are used. Specify weights for both in a tuple.")

        if self_weights is None and other_weights is None:
            int_result = True
            # unweighted, use the integer arithmetics
            results = np.zeros(n_queries + 1, dtype=np.intp)

            iresults = results
            count_neighbors_unweighted(<ckdtree*> self, <ckdtree*> other, n_queries,
                            &real_r[0], &iresults[0], p, cumulative)

        else:
            int_result = False
            # weighted / half weighted, use the floating point arithmetics
            if self_weights is not None:
                w1 = np.ascontiguousarray(self_weights, dtype=np.float64)
                w1n = self._build_weights(w1)
                w1p = <np.float64_t*> np.PyArray_DATA(w1)
                w1np = <np.float64_t*> np.PyArray_DATA(w1n)
            else:
                w1p = NULL
                w1np = NULL
            if other_weights is not None:
                w2 = np.ascontiguousarray(other_weights, dtype=np.float64)
                w2n = other._build_weights(w2)
                w2p = <np.float64_t*> np.PyArray_DATA(w2)
                w2np = <np.float64_t*> np.PyArray_DATA(w2n)
            else:
                w2p = NULL
                w2np = NULL

            results = np.zeros(n_queries + 1, dtype=np.float64)
            fresults = results
            count_neighbors_weighted(<ckdtree*> self, <ckdtree*> other,
                                    w1p, w2p, w1np, w2np,
                                    n_queries,
                                    &real_r[0], &fresults[0], p, cumulative)

        results2 = np.zeros(inverse.shape, results.dtype)
        if cumulative:
            # copy out the results (taking care of duplication and sorting)
            results2[...] = results[inverse]
        else:
            # keep the identical ones zero
            # this could have been done in a more readable way.
            results2[uind] = results[inverse][uind]
        results = results2

        if r_ndim == 0:
            if int_result and results[0] <= <np.intp_t> LONG_MAX:
                return int(results[0])
            else:
                return results[0]
        else:
            return results
    
    # ----------------------
    # sparse_distance_matrix
    # ----------------------
    
    def sparse_distance_matrix(cKDTree self, cKDTree other,
                               np.float64_t max_distance,
                               np.float64_t p=2.,
                               output_type='dok_matrix'):
        """
        sparse_distance_matrix(self, other, max_distance, p=2.)

        Compute a sparse distance matrix

        Computes a distance matrix between two cKDTrees, leaving as zero
        any distance greater than max_distance.

        Parameters
        ----------
        other : cKDTree

        max_distance : positive float
        
        p : float, 1<=p<=infinity
            Which Minkowski p-norm to use. 
        
        output_type : string, optional
            Which container to use for output data. Options: 'dok_matrix',
            'coo_matrix', 'dict', or 'ndarray'. Default: 'dok_matrix'.

        Returns
        -------
        result : dok_matrix, coo_matrix, dict or ndarray
            Sparse matrix representing the results in "dictionary of keys" 
            format. If a dict is returned the keys are (i,j) tuples of indices.
            If output_type is 'ndarray' a record array with fields 'i', 'j',
            and 'k' is returned,
        """
        
        cdef coo_entries res

        # Make sure trees are compatible
        if self.m != other.m:
            raise ValueError("Trees passed to sparse_distance_matrix have "
                             "different dimensionality")                                      
        # do the query
        res = coo_entries()
        sparse_distance_matrix(
                <ckdtree*> self, <ckdtree*> other, p, max_distance, res.buf)
                
        if output_type == 'dict':
            return res.dict()
        elif output_type == 'ndarray':
            return res.ndarray()
        elif output_type == 'coo_matrix':
            return res.coo_matrix(self.n, other.n)            
        elif output_type == 'dok_matrix':
            return res.dok_matrix(self.n, other.n)
        else:
            raise ValueError('Invalid output type')


    # ----------------------
    # pickle
    # ----------------------    

        
    def __reduce__(self):
        return (new_object, (cKDTree,), self.__getstate__())

    def __getstate__(cKDTree self):
        cdef object state
        cdef object tree = pickle_tree_buffer(self.tree_buffer)
        state = (tree, self.data.copy(), self.n, self.m, self.leafsize,
                      self.maxes, self.mins, self.indices.copy(), 
                      self.boxsize, self.boxsize_data)
        return state
            
    def __setstate__(cKDTree self, state):
        cdef object tree
        self.tree_buffer = new vector[ckdtreenode]()
        
        # unpack the state
        (tree, self.data, self.n, self.m, self.leafsize, 
            self.maxes, self.mins, self.indices, self.boxsize, self.boxsize_data) = state

        # set raw pointers
        self._pre_init()
        
        # copy kd-tree buffer 
        unpickle_tree_buffer(self.tree_buffer, tree)    
        
        # set up the tree structure pointers
        self._post_init()
        
        # make the tree viewable from Python
        self.tree = cKDTreeNode()
        self.tree._node = self.ctree
        self.tree._data = self.data
        self.tree._indices = self.indices
        self.tree.level = 0
        self.tree._setup()